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As soft robotic systems grow in complexity and functionality, the
size and stiffness of the needed control hardware severely limits their
application potential. Alternatively, functionality can be embodied
within actuator characteristics, drastically reducing the amount of
peripherals (1, 2). Functions such as memory (3), computation (4) and
energy storage (5) then result from the intrinsic mechanical behavior
of precisely designed structures. Here, we introduce actuators with
tuneable characteristics to generate complex actuation sequences
from a single input. Intricate sequences are made possible by har-
nessing hysteron characteristics (6) encoded in the buckling of a
cone-shaped shell incorporated in the actuator design. A large variety
of such characteristics are generated by varying the actuator geome-
try. We map this dependency and introduce a tool to determine the
actuator geometry that yields a desired characteristic. Using this tool,
we create a system with six actuators that plays the final movement
of Beethoven’s Ninth Symphony with a single pressure supply.
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In traditional robot architectures, a control signal is generated
separately for every actuator (Fig. 1A(i)). The actuators then
perform a one-to-one mechanical mapping of their input signal
to an output motion. This architecture allows for individual
programming of all outputs, but also requires a large number
of peripheral components. In inflatable soft robots these
components (pumps and valves) are typically stiff and heavy in

comparison to the actuators that they control, severely limiting
autonomous operation. Therefore, soft and light-weight pumps
and valves (7–9) have been developed and incorporated into
fluidic circuits that generate complex pressure signals (10–13)
However, a large amount of these components is required in a
robot with many outputs. The functional complexity of a soft
robot with a traditional control architecture is thus limited.

The number of components in a robot architecture can
be reduced by encoding part of the functionality into the
mechanics of the actuators rather than exclusively in the input
signals. This framework of embodied intelligence (14, 15)
allows to design robots with an underactuated control scheme
where the number of input signals is lower than the number of
degrees of freedom required to describe the state of the system.
All the actuators share a single control signal but have distinct
input-output characteristics designed to produce the desired
individual deformation profiles (Fig. 1A(ii)). If all these input-
output characteristics perform a one-to-one mapping, however,
the sequence in which the actuators reach certain output levels
when increasing the control signal is always symmetric to the
sequence when the control signal decreases. To introduce
complex functionalities, this symmetry needs to be broken. In
previous research on inflatable soft robotics, this is done by
harnessing viscous damping in the input-output characteristics
(16, 17). However, a large amount of damping is needed to
create significant asymmetry even when it is amplified by

A (i)

(ii)

B C (i) (ii)

(iii)

Fig. 1. Underactuating nonlinear actuators. A, Diagram of two robot control architectures. In traditional architectures (i), the control logic generates a unique signal for
every actuator. In underactuated architectures (ii), a single control signal driving multiple actuators with distinct input-output characteristics yields the same output signals.
B, pressure-volume (PV) curve and snapshots of a conical shell actuator. When the pressure is ramped up, the volume changes continuously following the left branch of
the PV curve (solid line). For all points on this branch, the shell is retracted (diagram of the actuator cross-section with geometric parameters on the left inset). When the
threshold pmax ( ) is reached, an unstable snapping transition (dashed arrow) is triggered to the right branch. On that branch, the shell is always extended (right inset) until
the pressure is ramped down to pmin ( ) and the shell snaps back to the retracted state. The scale bar is 10 mm. C, (i) Underactuation of a system of three conical shell
actuators labeled A, B and C with different PV curves. (ii) When the common pressure signal is increased and decreased (light blue), the isobaric snapping transitions to the
extended and retracted state ( and , respectively) are triggered in sequence. (iii) This leads to different combinations of actuator states over time.
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dynamic snap-through transitions (18–20), resulting in systems
that are impractically slow and energy-inefficient.

Here, we present an underactuated system that can generate
asymmetric sequences of discrete actions with high actuation
speeds and minimal loss of energy. The sequence asymmetry is
generated directly by the actuators that behave like hysterons.
This means that each actuator has two stable states and that
discrete transitions between both states are triggered when
the control signal passes a critical threshold (6, 21). In inflat-
able soft robotics, several actuators have been proposed with
hysteron characterstics that stem from the used hyperelastic
materials (20, 22, 23) or from nonlinear geometric effects in the
buckling of beams (24), flat sheets (25), singly-curved shells
(26–28) or doubly curved shells (5, 29). However the critical
thresholds of these solutions are not separately tuneable. To
this end, we introduce a novel soft actuator in the shape of a
truncated conical shell (cone angle θs, shell thickness ts, outer
radius ro, truncation radius ri as indicated on the inset image
of Fig. 1B) that buckles on inflation to produce a hysteron
characteristic. On Fig. 1B, the pressure and volume (PV)
inside the actuator are measured during inflation and deflation
by an external pressure source. As the actuator evolves from
point 1 to point 2, the conical shell deforms continuously but
remains retracted in the actuator. At the threshold pressure
pmax the shell suddenly buckles to point 3 where it extends
out of the actuator. During this snapping transition, elastic
energy stored in the actuator is released and converted into
kinetic energy or useful work. The extended state persists
until the actuator is deflated to pressure pmin and the shell
snaps back from point 4 to the retracted state at point 1.

If multiple conical shell actuators with different snapping
thresholds pmax and pmin are inflated by the same pressure
signal, any shells in the retracted state snap to the extended
state in order of ascending pmax ( in order ABC on
Fig. 1C). Similarly, on deflation all shells in the extended
state snap back to the retracted state in order of descending
pmin ( in order BAC) regardless of whether pmin is posi-
tive or negative. Therefore, the range of possible sequences
is fundamentally determined by the ordering of the snapping
thresholds. Solving the inverse problem of determining the
snapping thresholds to achieve a certain sequence is akin to
optimizing the actuator geometry to obtain a desired defor-
mation (30–32), but with optimization occurring in the PV
domain. Here, we will show that conical shell actuators are a
predictable platform for designing sequences that are encoded
in the snapping thresholds. In the following sections we show
how to predict these thresholds for conical shell actuators, how
to design a conical shell actuator for a particular combination
of snapping thresholds and how to determine the thresholds for
multiple actuators that result in a desired sequence. Finally,
we introduce an algorithm to determine the thresholds for
multiple actuators that result in a desired sequence and we
use the developed methods to design a system of six actuators
that is able to play Beethoven’s “Ode to Joy” on a keyboard
with a single controlled pressure supply.

Conical shell actuator modelling

To design underactuated systems for practical applications,
it must be possible to design nonlinear actuators for a de-
sired set of pmax and pmin where these snapping thresholds
(i) show a large variety over the design space, (ii) are robust
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Fig. 2. Conical shell actuator model accuracy. A, (i) Internal pressure when the
internal volume of a conical shell actuator (θs = 46°, ts = 1.44 mm) is ramped up
and down. Measured (blue) and simulated (orange) pressure-volume (PV) curves
with pressure normalized by material shear modulus G. Solid blue curve and shaded
blue area are the average and range of the PV curves of five actuators with the same
geometry made from Dragonskin 30 (DS30, G=262 kPa). For the dashed curve the
material is PDMS (G=701 kPa). Snapping occurs isobarically at thresholds and

under pressure control and isochorically at and under volume control. The
inset shows the pressure-displacement curve for the vertical displacement of the
shell apex ∆y matching the simulated PV curve. (ii) Simulated deformation at the
start (1), middle (2) and end (3) of the isochoric snapping transition on inflation and
deflation ((a), (b) and (c), respectively). ϵmax is the maximal principal logarithmic
strain and reaches a maximum value of 0.37 at the black arrow in (b). B, (i) Measured
isobaric snapping thresholds pmax and pmin after N repeated loading cycles for an
actuator with the same geometry as in subfigure A. The dashed lines are the values
of the snapping thresholds for N “ 0. (ii) Section of the PV curve in the first and the
50 000-th loading cycle.

to imperfections in the manufacturing process and (iii) re-
main constant over a large numbers of actuation cycles. In
the case of inflatable actuators with hysteron characteristics,
literature (22, 23, 26, 33) offers no designs that meet these
requirements. For our conical shell actuator however, it is
possible to accurately predict its pmax and pmin in all these
cases by means of a Finite Element Model (see S4). To quan-
tify the accuracy of this model, we perform a simulation and
manufacture an actuator with the same geometry (θs “ 46°,
ts “ 1.44 mm, ro “ 10 mm, ri “ 2 mm) and material (Dragon
Skin 30, Smooth-on) as the simulation (see S2). Next, a
volumetric flow source slowly increases and decreases the inter-
nal volume of the actuator V while the resulting pressure p is
monitored for both the manufactured actuator (see S3 and Sup-
plemental Video 1) and the model (see S4.5 and Supplemental
Video 2). Compared to the case where pressure is controlled
(Fig. 1B), the resulting pressure-volume (PV) characteristic is
identical until pmax and pmin are reached ( and ). No
snapping occurs at these points but instead the pressure goes
through a local extremum. Snapping is delayed until the actu-
ator reaches the isochoric snapping threshold and undergoes a
rapid volume-preserving motion ( and ) typical for the
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buckling of deep shells (34, 35). For the considered actuator,
this transition between the retracted and extended state is
symmetric during inflation but asymmetric during deflation
(Fig. 2A(ii)). In all cases, however, the vertical displacement
of the shell’s apex ∆y and the internal pressure in the actuator
suddenly change, where the relation between these two vari-
ables is given by the inset on Fig. 2A(i).Compared to previous
studies on the inflation of spherical (35) or spherical-derived
(36) shells where the isobaric and isochoric snapping points co-
incide, we find for our actuators an intermediate characteristic
in which both snapping threshold are separated. This leads to
a reduced sensitivity of pmin and especially pmax to random
imperfections in the geometry (see S4.2). We verify this result
by comparing an idealized simulation to measurements for
five actuators manufactured from the same mold, as shown
on Fig. 2A(i). The simulated values for the isobaric snap-
ping thresholds pmax (13.29 kPa) and pmin (4.28 kPa) agree
well with the values averaged over the manufactured actua-
tors (13.30 kPa and 3.93 kPa) and for the isochoric snapping
thresholds under volume control the maximum modelling error
is limited as well (0.04 mL). Moreover, the standard deviation
on pmax (0.28 kPa) and pmin (0.31 kPa) for the five PV curves
is small so random variations in the manufacturing process
have limited impact on the snapping thresholds.

The same finite element model also accurately captures the
PV curve of actuators with the same geometry but a different
overall size or material. Dimensional analysis shows that V {r3

o

is a dimensionless group that captures geometric scaling and
p{G is a dimensionless group that captures changes in the
material. In general, the material behavior of silicone rubbers
is described by more than one parameters such that p{G is not
constant for different materials. In the conical shell actuator
shown in Fig. 2A(ii), however, snapping occurs at small strains
with a maximum strain of 0.37 throughout an actuation cycle.
Consequently, the material behavior can be captured by a
single material parameter G and p{G is constant for different
materials (see S4.4). This is illustrated in Fig. 2A(i), where
we also plot the normalized results of a PDMS actuator. For
normalisation we use G “ 262 kPa for Dragon Skin 30 (9) and
G “ 701 kPa for PDMS (fitted on the initial slope of the PV
curve). Another advantage of the low material strain is that
material degradation on the snapping thresholds remains lim-
ited throughout the lifetime of the actuator. This is confirmed
by an experiment where the previously discussed conical shell
actuator is subjected to 50 000 loading cycles and the snapping
thresholds are measured periodically (see S3.4). As shown in
Fig. 2B, the shift in the snapping thresholds remains relatively
small and shows no consistent downward trend as the number
of cycles increases. This means that a single simulation suffices
to predict the behavior of a conical shell actuator across a
range of materials, length scales and loading cycles.

Design for actuator characteristics

The accuracy of the numerical model allows us to develop a
mapping that directly translates desired values for pmax and
pmin into an actuator design that embodies these snapping
thresholds. To this end, we repeat the simulations for actuators
with ri and ro fixed to 2 mm and 10 mm while θs and ts are
sampled uniformly from the rectangular domain r20˝, 55˝

s ˆ

r0.5 mm, 2 mms with steps of 2.5° and 0.1 mm. We report all
variables in dimensionless groups (θs, ts{ro, p{G, V {r3

o) such
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Fig. 3. Shaping pressure-volume curves. A, Qualitative dependence of simulated
conical shell actuator PV curves on cone angle θs and normalized shell thickness
ts{ro. (i) The curves are classified in four categories: monotonic curves without
snapping, curves with an isobaric snapping pair, curves with a single additional
isochoric snapping pair and curves with multiple additional isochoric snapping pairs.
(ii) PV curve samples from every category. Markers 1-4 in the (θs,ts{ro)-plane
indicate the corresponding geometric parameters and the insets show the resulting
actuator geometry. and indicate isobaric snaps on inflation and deflation, and
and indicate isochoric snapping on inflation and deflation, respectively. B, Selection
chart consisting of contours connecting points in the (θs,ts{ro)-plane that yield the
same normalized peak (pmax{G) or valley (pmin{G) pressure.For actuators in the
dotted area, pmin ă 0, meaning that they are bistable at atmospheric pressure
(p “ 0). The contours of pmax{G “ 0.024 and pmin{G “ 0.012 are highlighted.
The inset shows the PV curve with the corresponding peak and valley pressure. This
curve corresponds to a conical shell actuator with θs “ 37.8° and ts{ro “ 0.118,
which are the coordinates of the intersection point of the highlighted contours.

that the results can be universally adopted regardless of the
scale and material required for a particular application.

The shape of the PV curve changes drastically across the
sampled domain (Fig. 3A(i)). As θs increases and ts{ro de-
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creases, the number of possible snapping transitions in the PV
curves increases. We track this evolution by separating the PV
curves in four categories with different numbers of snapping
thresholds (threshold detection algorithm in S5), each exem-
plified by a sample actuator 1-4 in Fig. 3A(ii). The category
of sample 1 features no snapping thresholds and occurs in the
part of the domain where θs is low and ts{ro is high. Near
the border of this region, the PV curve develops an inflection
point which eventually gives rise to a local maximum ( ) and
minimum ( ) in pressure. For low angles, this leads to PV
curves like sample 2 with only isobaric snapping thresholds.
This category only occupies a small part of the domain, as
the occurrence of isobaric snaps is quickly followed by the
development of a pair of isochoric snaps like in sample 3 (in-
flation: , deflation: ). While for the first two categories
the deformation of the shell always remains axisymmetric,
in this third category at least one of the isochoric snaps is
accompanied by a transient asymmetric motion of the shell
during which the cone tilts (Fig. 2B(ii)). For the deepest and
thinnest shells, one or multiple of these transient asymmetric
configurations can become stable. This leads to complex PV
curves like sample 4, where multiple consecutive snaps occur
during volume-controlled inflation and deflation.

Even though the shape of the PV curve changes drastically
across the sampled design parameter space, the main features
of interest follow consistent trends. On the one hand, pmax{G
increases monotonically with both θs and ts{ro, ranging from
0.002 to 0.142 over the sampled domain. pmin{G, on the other
hand, decreases with θs and increases with ts{ro, covering
values between ´0.003 and 0.101. Negative values for pmin

correspond to actuators that are bistable at atmospheric pres-
sure and occur when θ2

sro{ts ą 7.1 (θs expressed in radians).
In order to harness these data to design actuators with a par-
ticular set of snapping thresholds, we introduce the selection
chart shown on Fig. 3B. This chart is the superposition of the
contours of pmax{G and pmin{G in (θs, ts{ro)-space (see S6.1).
In order to find the geometric parameters θs and ts that lead to
a certain set of snapping thresholds, it suffices to identify the
intersection point between the contours of pmax{G (dark lines)
and pmin{G (light lines) that match the desired values. The
horizontal and vertical coordinate then correspond to ts{ro

and θs, respectively, that generate a characteristic with the
desired pmax and pmin. As an example, Fig. 3B shows that for
an actuator with pmax{G “ 0.024 and pmin{G “ 0.012, the
contours intersect at θs “ 37.8˝ and ts{ro “ 0.118, which are
the geometric parameters that yield the characteristic shown
on the inset. The resulting tool is valid regardless of the
envisioned material or scale of the actuator, making Fig. 3B
universally valid for the design of conical shell actuators.

In addition to pressures, contours of other key actuator
characteristics (volume or displacement) can be plotted in
(θs, ts{ro)-space as well (see S6.2). Superimposing any two
sets of contours allows to find (θs, ts{ro) for any pair of desired
characteristics, with G and ro as a given. Moreover, if G and
ro can be chosen freely, up to four characteristics can be
inversely designed for using adapted selection charts (see S6.3).
While these design procedures generalize to other actuators,
the conical shell actuator is uniquely suited for applications
involving embodied intelligence since (i) the achievable range
of (pmax, pmin) or any other combination of characteristics is
larger (see Fig. 4D), (ii) the modelling error on the isobaric

snapping thresholds is small (ă 0.0036 G for the measurements
in 2A), and (iii) the variation in those thresholds remains
small over the lifespan of the actuator (ă 0.0042 G for the
measurements in 2B).

Design for embodied system characteristics

Precise control over nonlinear actuator characteristics enables
the design of systems with embodied intelligence for a specific
functionality. To demonstrate this, we use Fig. 3B to design
an underactuated system consisting of six actuated degrees of
freedom that can play the 62 note sequence that constitutes
Beethoven’s “Ode to Joy” (Fig. 4A) on a piano keyboard with a
single pressure supply line (Fig. 4B). The supply line provides
compressed air with varying pressure pcptq and the system
consists of six conical shell actuators in an underactuated
architecture as in Fig. 1A(ii). Each of the six actuators is
placed above a dedicated key of a piano (D4, G4, A4, B4, C5
and D5) such that the corresponding note is played if pmax of
the actuator is exceeded by pcptq. Designing an underactuated
system that can play “Ode to Joy” thus consist of tuning
six actuator snapping thresholds (pmax, pmin) in addition to
generating the continuous pressure signal pcptq that needs to
be applied to generate the melody. This design process consist
of a qualitative step involving a symbolic algorithm and a
quantitative step involving Fig. 3B.

In the qualitative step, we abstract both the song and the
physical system playing it. First, we reduce “Ode to Joy” to
a sequence of key presses represented by the combinatorial
word B4B4C5D5D5C5B4A4 . . .. As such, we only consider
the relative order of the key presses and disregard the pitch,
duration and spacing of the associated notes. Second, we
abstract the operation of each pair of a piano key and its
matching actuator as a two-state hysteron (Fig. 4C) In the
first state, the conical shell is retracted and the piano key is
up and in the other state the conical shell is extended and
the piano key is down. The transitions between these states
correspond to the isobaric snapping transitions at pressures
pmax and pmin. While in most systems of hysterons the output
is determined by the static states of the hysterons, a piano only
produces a note when a key transitions from the up to the down
state, after which the note quickly fades out. In our case, the
Finite State Machines that describe the hysterons are therefore
of the Mealy type (37), where playing notes is associated with
the snapping transitions at pmax. The sequence in which
these transitions can occur and hence the range of melodies
that an underactuated system of actuators can play is fully
determined by the relative order of the actuators pmax on the
one hand, and the order of their pmin on the other hand. In
S7.2, we formalize this relation as a set of constraints on the
playable sequences for a certain system. By harnessing these
constraints, we develop an algorithm that efficiently prunes the
search space of all possible orders of pmax and pmin to find the
combination that can play a given sequence (S7.3). Beyond
playing melodies, this algorithm can be used to design a system
of hysterons for any task that can be described by a Finite
State Machine of the Mealy type that satisfies return point
memory (38). For the melody of “Ode to Joy”, the algorithm
only needs to check 24 of the p6!q2

“ 518, 400 possible designs
to find that the system with G4 ă A4 ă D4 ă B4 ă C5 ă D5
for pmax and D4 ă G4 ă A4 ă B4 ă C5 ă D5 for pmin is able
to play the melody. While this solution is unique for “Ode
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Fig. 4. Underactuated piano playing. A, “Ode to Joy” is a melody of 62 notes containing six different tones. B, Demonstrator that plays “Ode to Joy” on a keyboard with six
conical shell actuators and a common pressure signal pcptq generated by a single valve. Each actuator has a unique set of geometric parameters and a unique color. These
colors carry over to the other subfigures to refer to the matching notes or PV curves. C, Close-up of the D5 actuator playing a note. If the actuator is in the retracted state (left)
and pcptq exceeds pmax ( ) of the actuator, the actuator plays a note as it snaps to the extended state (right). The actuator stays in that state until pcptq drops below pmin

( ) and it resets without playing a note. D, Design values for pmax and pmin of the six keyboard actuators plotted in the Preisach plane. The order of the markers on the
horizontal and vertical axis correspond to the smax and smin from the sequence design algorithm, respectively. The markers are overlaid on the regions of the Preisach plane
that can be reached by spherical balloons (33), tubes with braids (22) and conical shell actuators. E, Experimental PV curves of the keyboard actuators measured in inflation (i)
and deflation (ii) with orderings smax and smin as designed for in subfigure D. F, Bottom: measured pressure signal pcptq on playing the part of the sequence highlighted in
subfigure A. and mark transitions from the low- to the high-volume state and back again, respectively. Top: timing of the notes played by the actuators where colored
horizontal lines indicate the time intervals when they are in the high-volume state. Scale bars on photos are 10 mm

to Joy”, for some melodies multiple solutions exist while for
others no solution exists (see S7.5).

In the quantitative step, we match every note to a conical
shell actuator design. The values for the actuators pmax

and pmin are free to choose as long as their relative order
is maintained and they lie within the range of achievable
(pmax, pmin). For the conical shell actuator, this range is
much larger than for other nonlinear actuators presented in
literature. (Fig. 4D). Moreover, for the demonstrator we
take into account the required stroke to actuate the piano
keys as well as the robustness of the snapping threshold to
imperfections in the manufactured geometry (see S8). Before
using the selection chart, we select ro “ 10 mm for all actuators
to fit over the piano keyboard. To limit the influence of the
pressing forces on the snapping thresholds of the actuator,
we minimize the stiffness of the piano keys and maximize the
stiffness of the actuators by selecting PDMS (G “ 701 kPa)
as their material. With the selected values for pmax, pmin,
ro and the material G, we use the selection chart (Fig. 3B)
to find the geometric parameters of the actuators. We then
manufacture six actuators with the identified geometry (see
S2) and measure their PV characteristic experimentally (see

S3). As shown on Fig. 4E, the ordering of pmax and pmin is
as designed for, so the ability to play “Ode to Joy” is hard
coded into the design of the actuators. The discrepancies
between the measured and desired values for pmax and pmin

are largely due to variations in the material characteristics of
PDMS, which are known to be very sensitive to manufacturing
parameters such as the mixing ratio and the curing procedure.

To play the melody, an electronic proportional valve gen-
erates pcptq as a stepwise signal between the measured ac-
tuator snapping thresholds. This is schematically shown in
Fig. 4F which zooms in on a 5-note section of the music piece
A4B4C5B4G4. As the values for pmax of A4, B4, C5 are in
ascending order and all actuators are in the retracted state at
the start of the section, playing the first three notes can be
done by consecutively exceeding their pmax. Playing B4 again
first requires a reset by lowering the pressure below its pmin.
In this case the pressure must stay above pmin of G4 as it has a
lower pmax but can not be played at this point in the sequence
(see S7.4). After playing B4, however, the next note to be
played is G4 so then the pressure can drop below its pmin,
resetting actuators B4, A4 and G4 in that order. Note that
here we do not reset C5, as it was already reset together with
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resetting B4 for the first time. Because of the high bandwidth
of the underactuation mechanism, the minimal time interval
between subsequent notes is limited by the time needed for the
pressure controller to reach the required snapping thresholds,
which scales with the difference in pressure between them.
With the length of an eighth note set to the smallest possible
time interval attainable by the pressure controller, the result-
ing sequence of snaps translates in a faithful rendition of “Ode
to Joy” on the piano (Supplemental Video 3).

For a given set of conical shell actuators, only a limited
number of sequences can be achieved, as this is mechanically
encoded in the snapping pressures of the actuators. One way
to expand the range of possible sequences is to harness the
the viscoelasticity of the actuators or the pressure drop in
the tubes that connect them to the pressure source. Both
effects cause a time delay between the pressure input and the
deformation of the actuator such that the sequence depends
on the timescale of the pressure input (16, 17, 39). Another
approach is to manufacture the actuators out of functional
materials such that their thresholds can be tuned by external
electric (40) or magnetic (41) fields. Finally, the snapping
thresholds also depend on the external forces acting on each
actuator (see S3.3, S5.3 and S6.2). In the demonstrator, the
low stiffness of the piano keys limits this effect, but in other
applications external forces can modify the order of the thresh-
olds and the resulting sequence. On the one hand, the pressure
controller then needs to keep track of all previous internal
and external inputs to the system to accurately predict the
sequence. On the other hand, this property can be harnessed
to deliberately change the sequence in response to inputs
from the environment without electronic control (11). Despite
these limitations, the proposed design strategy can be applied
for other applications regardless of the desired material, size
or deformation mode of the actuator. As shown by the di-
mensional analysis, changing the material and the size of the
actuator only scales all PV curves within the scale limits of
continuum mechanics. In practice, a large range of materials
can be used because the low strains during actuation put less
strong constraints on the ultimate strain than most nonlinear
inflatable actuators. Regarding its size, the monolithic and
low-complexity geometry of the actuator is compatible with a
wide range of manufacturing techniques including lithography,
which allows miniaturization. In order to achieve different de-
formation modes, it is possible to use the conical shell actuator
as a valve (9) or pump (36) that drives a secondary actuator.
In addition, future research can be directed towards using
multiple conical shell actuators as building blocks to shape
compound actuators where the snapping thresholds and the
relative orientation of the building blocks determine the global
deformation sequence of the compound actuator. For instance,
a serial stacking of multiple conical shells, eccentrically po-
sitioned with respect to the neutral axis of a structure, can
instigate a bending deformation when snapped. In all these
cases, the design tools for shaping the nonlinear characteristic
remain valid and the actuation mode is only determined by
the design of the compound actuator. The presented actuator
and tuning methods therefore form a universal building block
for inflatable systems with embodied intelligence.
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Supplementary data

Supplementary information document

Supplementary Video 1 Experimental actuator characteri-
zation. Quasi-static volume controlled inflation and deflation
of the D5 conical shell actuator at a flow rate of 50 µL/s.
The pressure-volume curve on the right features the data
measured during the experiment shown on the video. The
video is sped up by a factor three. During the quasi-static
experiment, rapid isochoric snapping transitions occur.
These are shown in slow motion where the video is slowed
down by a factor 0.075. In all frames, the scale bars are 10 mm.

Supplementary Video 2 Numerical actuator character-
ization. Finite-element model of the volume controlled
inflation and deflation of the D5 actuator side-by-side with
the simulated pressure-volume characteristic. Because of the
adaptive time stepping in the solver, the simulation time
between any two consecutive frames is not constant. This
leads to a slower apparent motion of the conical shell in
the neighborhood of the isochoric snapping transitions that
highlights the sequence of symmetry-breaking deformation
modes.

Supplementary Video 3 Underactuated piano demonstrator.
Inflation of six tuned conical shell actuators with a predefined
pressure signal to play Beethoven’s “Ode to Joy” on a piano
keyboard. The pressure is controlled by an off-screen pro-
portional valve, distributed through the transparent tubing
and measured with a manometer and an off-screen pressure
transducer. The monitor behind the setup displays the mea-
sured pressure signal in function of time and shows a colored
rectangle whenever a piano key registers contact. The video
is sped up by a factor 2.5.
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S1. Actuator geometry

The conical shell actuator consists of two main functional
segments joined with a compliant hinge: a conical shell and
a cylindrical wall. The function of the conical shell is to
convert an increase in volume into a useful deformation and
to generate the peaks and valleys in the PV curve depending
on the angle θs and thickness ts of the cone (Fig. S1). In
comparison to a spherical shell, the conical shape has two
main advantages. The first advantage is that for a given outer
radius ro of the actuator, the maximum depth of a spherical
shell is limited to ro, limiting the stroke. For a conical shell,
there is no geometric constraint on the depth or stroke which
can take arbitrary values as θs asymptotically approaches π{2.
The second advantage is that for a conical shell the isobaric
snapping threshold on inflation occurs at a smooth maximum
in the PV curve while for a spherical shell it occurs at a
cusp. PV curves with such a cusp are extremely sensitive
to imperfections in the shell shape such that the snapping
threshold for manufactured shells can be much lower than the
theoretical value (35). As a consequence, the isobaric snapping
threshold on inflation of a conical shell is more predictable
and reproducible than for a spherical shell (see also S4.2).

The function of the cylindrical wall with height hw and
thickness tw is to provide a site for clamping at the bottom of
the actuator. Because of the height of the wall, variations in
the clamping boundary conditions have a negligible effect on
the peak and valley of the PV curve. Instead, the influence of
the cylindrical wall on the PV curve is that of a nearly linear
spring in series with the conical shell. For high wall aspect
ratios hw{tw, the wall has a high compliance which causes
each point of the actuator PV curve to increase in volume
with an amount proportional to the pressure at that point.
Therefore, tuning the aspect ratio of the wall allows to affect
the volume coordinates at every point of the PV curve without
changing the peak and valley pressure. However, the precise
influence of the cylindrical wall on the actuator PV curve is
out of the scope of this research.

The conical shell and the cylindrical wall have the same
outer radius ro and are joined by a compliant hinge. At the
inner side of the conical shell, another compliant hinge connects
the shell to a central cap with with radius ri and thickness ts.
The inner and outer corners of both hinges are rounded with a
radius of curvature of ρi and ρo, respectively, in order to limit
stress concentrations. Apart from θs and ts, the geometric
parameters have limited effect on isobaric snapping thresholds
which determine the underactuation behavior. Therefore, all
these geometric parameters are kept constant throughout all
reported simulations and experiments with values as reported
in Table S1. Where possible, the dimensions are expressed as
numbers that require a small amount of significant digits to

Fig. S1. Parametrized conical shell actuator geometry. The conical shell actuator
consists of different functional segments as indicated by the legend. All drawn line
segments are either straight lines or circular arcs. Apart from θs and ts, all geometric
parameters have constant values throughout all simulations and experiments. Their
values are reported in Table S1.

ro ri hw tw ρo ρi

10 mm 2 mm 10 mm 1.5 mm 2 mm 1 mm
Table S1. Conical shell actuator dimensions.

facilitate machining of the moulds with common shape tools.
With the definition of ri and hw at reference points along

the inside of the actuator, the thickness ts has no influence
on the initial cavity volume of the actuator. However, this
definition enforces a geometric constraint on the maximum
allowed thickness of the conical shell:

ts ď ρo ´ ρi `
ri sin θs

1 ´ cos θs
. [1]

In the parameter study, the highest value for θs is 60° which
with the other parameters from Table S1 results in a maximum
possible ts{ro of 0.45. This value is well above the value for
which the PV curves cease to be nonmonotonic. The limit on
ts imposed by our parametrization therefore does not constrain
the range of achievable isobaric snapping thresholds.

S2. Actuator manufacturing

S2.1. Mold design. Each of the actuators characterized for the
piano demonstrator is manufactured as a monolithic structure
by curing PDMS (Sylgard 184, Dowsil) in a dedicated mold.
There are two differences between the geometry of the mold
cavity shown in Fig. S2 and the geometry described in S1, but
they have a negligible effect on the actuator PV-characteristic.
The first difference is that the cylindrical wall has a draft
angle θw to limit the force required to demold the actuator.
The second difference is that the cylindrical wall extends
downward and widens into a flange with a toroidal ring along
its outer perimeter. This feature allows airtight clamping of the
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Fig. S2. Manufactured geometry. The geometry of the manufactured conical shell
actuators contains additional features to facilitate manufacturing and characterization.
The dimensions of these features are reported in Table S2.

θw rf hf tf tt rr ρf

1.5° 12.85 mm 3.75 mm 1 mm 1 mm 1.5 mm 0.5 mm
Table S2. Dimensions of the manufactured actuator geometry.

actuator (see S2.3) while respecting the boundary conditions
used in the simulation. Additionally, a small marker tab
protrudes from the toroidal ring. It breaks the axisymmetry
of the actuator and therefore provides a reference to measure
angles in the radial plane. This allows to determine whether
any asymmetric deformation in a set of actuators with the
same geometry originates from a bias the mold geometry or
from factors unrelated to the orientation within the mold
(e.g. the clamping boundary conditions or random material
heterogeneities). The dimensions of these features are the same
for all manufactured actuators and are given in Table S2.

As shown on Fig. S3A, the mold consists of a male (1) and
a female (2) half with a parting surface (3) coinciding with
the equatorial plane of the toroidal ring. The small area of
the parting surface limits the possibility of particles being
trapped between the mold halves and affecting their spacing.
In the male half, three overflow channels (4) allow excess
rubber to spill from the mold as it is closed. The placement of
both the parting line and the overflow channels concentrates
any excess material left after demolding in those parts of the
structure that do not deform under inflation. Therefore, these
uncontrollable additions of extra material do not alter the PV
characteristic. Additional features of the mold include three
holes for 2 mm diameter alignment pins (5) and three holes for
M3 bolts to clamp the mold halves together (6). Finally, both
mold halves feature a flattened side (7), a chamfered widening
(8) of the parting surface and threaded M3 holes located on
the external faces at the axis of revolution (9). These three
features facilitate separating the mold halves with a variety of
tools.

The male and female parts of the molds are machined
from a brass round bar (CuZn39Pb3, diameter 65 mm). In a
first machining step, all axisymmetric features of the molds
are turned on a precision lathe (Spinner MB). Then, all non-
axisymmetric features (the tab on the toroidal ring, all holes
and the flattened side) are milled on a 5-axis micro milling
machine (Kern MMP). Finally, the holes for the alignment pins
are reamed on the latter machine to achieve the required toler-
ance. Using these precision machines minimizes the geometric
imperfections present in the mold to minimize uncontrollable
deviations from the simulations. Since the produced surfaces
are smooth, the moulding process requires no demolding agent

A

B

Fig. S3. Actuator molding. A, Brass mold for the A4 actuator of the piano demon-
strator. Indicated mold features are (1) male mold half, (2) female mold half, (3)
parting surface, (4) spill hole, (5) alignment pin hole, (6) clamping bolt hole, (7) flat
side, (8) parting chamfer, (9) threaded hole at the backside of both molds. B, Two
samples of manufactured actuator. The right sample has been cut in half to show
the cross-sectional profile (color enhanced to emphasize the profile). Scale bars are
10 mm.

that could affect the properties of the cured silicone.

S2.2. Actuator manufacturing procedure. For this research,
six molds were made, one for each of the actuators in the
piano demonstrator. The actuators were manufactured fol-
lowing the procedure below which was designed to minimize
imperfections:

1. Clean both matching mold halves, the three alignment
pins and the three sets of M3 bolts, nuts and washers
with isopropanol. This removes contaminants that can
introduce imperfections as they can locally inhibit curing
of the silicone rubber.

2. Prepare the silicone rubber in a clean cup according to
the provided instructions. For the actuators in the demon-
strator, we use 8 g of PDMS (Sylgard 184, Dowsil) in the
recommended weight ratio of prepolymer to cross linking
agent of 10:1. To visually differentiate different actuator
geometries, dip the tip of a skewer in silicone pigment
(Silc Pig, Smooth-On) and mix it through the silicone
until it has a homogeneous color. We verified experimen-
tally that adding this small amount of pigment has no
measurable effect on the actuator PV characteristic.

3. Degas the cup with the silicone for ten minutes inside
a chamber connected to a vacuum pump (P6Z, Ilmvac,
with ultimate pressure 2 × 10−3 mbar). This removes air
bubbles from the mixture that can cause imperfections.
To further minimize the risk of trapping air bubbles on
filling the mold halves and assembling the mold, the
silicone mixture should be sufficiently viscous. Therefore,
place the silicone mixture briefly in an oven (45 s at 75 °C)
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A B

Fig. S4. Actuator clamping. A, Clamping assembly. B, Exploded view with indicated
features (1) actuator, (2) base plate, (3) top plates, (4) cylindrical protrusion, (5) supply
tubing, (6) top plate central hole, (7) slit to accommodate deformation, (8) holes for
clamping bolts. Scale bars are 10 mm.

after degassing to reach the desired viscosity.
4. Pour the silicone mixture in the mold cavity. Filling all

wells in both mold halves and placing them in a vacuum
chamber for an additional five minutes minimizes the risk
of trapping air bubbles during final assembly of the mold.

5. Assemble the mold. Place the female half on a table with
the mold cavity facing up and insert the three alignment
pins in the corresponding holes. In a fluent movement, flip
the male half upside down and slide it over the alignment
pins until both mold halves make contact. Next, insert
three M3ˆ35 bolts through the corresponding holes and
tighten the M3 nuts to clamp the mold shut. Use a washer
at both sides of every bolt to minimize damage from the
nut and bolt to the mold. Finally, remove any excess
silicone spilling from the mold.

6. Let the silicone cure. To decrease the recommended curing
time of 24 hours, place the mold in a 75 °C oven for two
hours and then let it cool down for 30 minutes at room
temperature.

7. Open the mold. First remove any excess rubber that cured
on the surface of the mold. Then remove the three nuts
and bolts. Finally, slowly insert the shaft of a screwdriver
in the chamfered parting plane of the mold while applying
isopropanol for lubrication until the mold halves can be
pulled apart.

8. Remove the actuator from the mold by gently working it
free with blunt tweezers and applying more isopropanol.
When it is released from the mold, use a precision knife
to remove the excess rubber that cured in the overflow
channels from the flange.

Fig. S3B shows one of the actuators manufactured following
this procedure.

S2.3. Actuator clamping design. The clamping connects a con-
ical shell actuator mechanically to a support structure and
fluidically to a pressure supply line. Both types of connections
impose requirements on the clamping design. Mechanically,
we require that the clamping is stiff and constrains any motion
of the bottom of the cylindrical wall with minimal prestrain
of the actuator. This prevents loads on the support structure
from influencing the actuator PV curve and can be easily
modeled in simulations. Fluidically, we require an airtight
connection since any leaks would distort the volume reading
in the experimental PV curve measurement (see S3).

All those requirements are met by the clamping assembly
shown in Fig. S4. It clamps the actuator (1) between a base

plate (2) and two top plates (3) such that the actuator ex-
periences both a radial and an axial clamping force. Both
the 4 mm thick base plate and the 2 mm thick top plates are
manufactured from acrylic glass sheets by lasercutting (Speedy
100R, Trotec Laser). The base plate features a 4 mm high
cylindrical protrusion (4) with a central hole that provides
an airtight fit for a piece of 6 mm OD polyurethane tubing
(PUT6-C, Misumi) (5). The connection between the base
plate, the protrusion and the tubing is further secured by
applying cyanoacrylate glue (Loctite 460, Henkel adhesives)
along the edge of the hole. Both top plates feature a central
hole (6) and a cut (7). While the protrusion of the base plate
fits loosely inside the actuator cavity, the central holes of the
top plates are undersized with respect to the outer radius of
the actuator. When the clamping is assembled, the cut in the
top plates allows them to deform and accommodate the differ-
ence in radius. This permanent deformation imposes a radial
clamping force on the flange with a small radial prestrain on
the actuator. To secure the top plates and provide a way of
connecting the clamping to other structures, sets of M3 bolts
and nuts are inserted through oversized holes (8) in each of
the acrylic parts and are tightened. This also compresses the
toroidal ring axially which introduces an additional clamping
force. Assembling the clamping with the cuts in the two top
plates at opposite sides from each other results in the most
uniform distribution of both the radial and axial clamping
force.

S3. Pressure-volume curve characterization

S3.1. General setup. To obtain the pressure-volume charac-
teristic of an actuator, we clamp the actuator as described in
S2.3 and connect it to the setup shown in Fig. S5. This setup
performs a stepwise inflation of the actuator (1) with a known
volume and measures the resulting pressure in the actuator
cavity. The volume in the actuator over time is determined
and tracked by a LabVIEW program running on a personal
computer (2). This program actuates a custom syringe pump
consisting of an Arduino Uno running the LabVIEW Interface
For Arduino and equipped with a motor shield (3), a step-
per motor (QSH-4218-35-10-027, Trinamic) (4), a linear stage
(LX-2001C, Misumi) (5) and a gastight glass syringe (model
1050 TLL, Hamilton company) (6). Driving the stepper motor
in half-stepping mode results in a total volumetric resolution
of 2.1 µL per step of the syringe pump. To ensure that the
volume displaced by the syringe pump is equal to the increase
in volume of the actuator cavity, all tubing (PUT6-C, Misumi)
is stiff and the entire fluidic circuit is filled with water (see
S3.2). A T-bore stopcock (7) attached to these tubes allows
to connect other devices to the circuit.

With the change in actuator volume determined by the
syringe pump, a piezoresistive pressure transducer (PR-21S,
Keller Druckmesstechnik) (8) powered by a DC voltage supply
(E0300-0.1, Delta Elektronika) (9) measures the pressure in the
actuator cavity. To minimize pressure differences between the
sensor and the actuator cavity due to hydrostatic and viscous
effects, we place the sensor and actuator at the same height and
use short tubes with an inner diameter of 4 mm in combination
with low flow rates. Finally, an analog data acquisition card
(NI 9215, National Instruments) (10) transmits the pressure
signal to the LabVIEW program with a resolution of 15.2 Pa.
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Fig. S5. Pressure-volume curve measurement setup. Experimental setup to
measure the pressure of an actuator under volume controlled inflation with indicated
features (1) actuator under test, (2) LabVIEW program running on a personal computer,
(3) Arduino and stepper motor driver, (4) stepper motor, (5) linear stage, (6) glass
syringe, (7) stopcock, (8) pressure transducer, (9) voltage supply and (10) data
acquisition module. Scale bar is 50 mm.

S3.2. General procedure. Several factors can skew the data of
the measured pressure-volume characteristic. Therefore, all
experiments are preceded by the following preparatory steps:

1. Close the clamping assembly under water and connect it
to the measurement setup filled with water in advance.

2. Connect a syringe filled to 20 % of its capacity with water
and no air inside to a piece of tubing filled with water
branching off from the stopcock. Hold the syringe in a
vertical position with the plunger facing upward and then
pull the syringe plunger to create a partial vacuum in the
fluidic circuit and trap air bubbles in the syringe. These
first two steps serve to remove as much air as possible
from the setup since the compression of pockets of air
directs a part of the volume displaced by the syringe
pump away from the actuator cavity, skewing the volume
data.

3. Slowly release the plunger of the syringe, disconnect the
tubing from the syringe and connect it to a reservoir of
water at atmospheric pressure. This restores the pressure
in the circuit to atmospheric pressure and the actuator
to its stress-free configuration.

4. Using the LabVIEW program, retract the plunger of the
syringe pump to draw 2 mL of water from the reservoir.
The motion history of the plunger is then identical to
that at the end of a cycle of inflation and deflation. Con-
sequently, any hysteresis present in the syringe pump due
to e.g. deformation of the sealing ring causes no difference
between the volume in the syringe at the start and at the
end end of the measurement cycles. We observe that this
removes a shift of approximately 20 µL in the effective
actuator volume between the start of the first and the
second measurement cycle.

5. Wait 15 s and close the branch of the stopcock that leads
to the reservoir so that the volume displaced by the syringe
pump is directed exclusively towards the actuator.

6. Calibrate the offset on the pressure transducer signal such
that it reads zero in this reference configuration.

7. Repeatedly inflate the actuator to a volume at least 50 %

A B

Fig. S6. Influence of flow rate. A, Pressure-volume curves measured on the same
D5 actuator with varying flow rate Q resulting in different measurement durations
T . B, Influence of this varying flow rate on the isobaric and isochoric snapping
thresholds. The left and right vertical axes give the value for the threshold on inflation
and deflation, respectively. Both axes have the same scale but different offsets.

larger than the intended measurement range until the
measured PV curves do not change significantly between
subsequent measurements. This is a sign that the align-
ment of the polymer chains has stabilized and that the
Mullins effect has subsided within the desired range of
strain.

Next, a measurement of the actuator pressure-volume curve
is initiated through the LabVIEW program. It inflates and
deflates the actuator a number of times without pauses between
subsequent strokes. During each of these strokes, the program
drives the syringe pump to dispense volume in increments of
2.1 µL at regular time intervals. After every step of the stepper
motor, the program stores the cumulative volume displaced by
the syringe pump, the average value of the pressure transducer
over that step and a timestamp. Together with a sound signal
that is generated by the program at the start and end of
every stroke of the syringe pump, these timestamps allow
synchronization with footage of the actuator recorded by a
camera (Nikon 1 V3).

The flow rate with which the actuator is inflated and de-
flated is 50 µL/s for all measurements. This value results from
an experimental study where the flow rate is varied between
16 µL/s and 90 µL/s, which is the highest flow rate achievable
with the setup (Fig. S6). In case viscoelastic material damping
in the actuator of viscous losses of the flow through the tubes
is significant, an increase in flow rate results in higher pres-
sures on inflation and lower pressures on deflation. However,
even for the maximum flow rate the difference between the
pressure on the inflation and deflation stroke is negligible apart
from the region where the isochoric snapping transitions cause
hysteresis. Moreover, the difference in the isobaric snapping
thresholds between experiments using different flow rates is
insignificant compared to the level of noise on the signal. Sim-
ilarly, there is no clear trend in the evolution of the isochoric
snapping thresholds with flow rate The influence of viscoelastic
effects on the PV characteristic is therefore negligible for the
considered flow rates. However, for the highest flow rate of
90 µL, the integration interval for the pressure transducer is
only 23 ms. This means that the averaging of the signal of
that interval poorly attenuates the power grid frequency of
50 Hz such that the signal to noise ratio is poor. This ratio
improves by decreasing the flow rate to 50 µL/s beyond which
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Fig. S7. Influence of external loading. A, Pressure-volume curves measured on
the same D5 actuator with varying magnitudes of a constant axial force Fy applied
at the conical shell apex. B, Influence of the varying load on the isobaric snapping
thresholds in the experiment (solid blue lines with triangular markers). The measured
trends are modeled accurately by a dedicated finite element analysis (solid orange
lines) and by a first order model based on simulation data (dashed orange lines) as
described in S5.3.

improvement stagnates. To minimize measurement times, a
flow rate of 50 µL/s is selected for all experiments. Finally, ev-
ery actuator is measured five times and the recorded pressure
values are averaged to attenuate noise on a longer time scale,
e.g. the vibrations originating from stick-slip of the syringe
seal.

S3.3. Measurements with external force. For the measure-
ments of the influence of an external load on the pressure-
volume characteristic of an actuator in Fig. S7, the considered
load case is a force concentrated at the center of the conical
shell cap with a constant magnitude Fy and direction parallel
to its axis of revolution. In order to reproducibly load the
actuator with such a force, the measurement setup from S3.1 is
augmented with a lever made of a wooden board. To minimize
the torque required to pivot the lever, it features a fixed axle
going through its center of mass that rolls over a hard support
surface. At either side of this axle, a site is marked at 120 mm
from the fulcrum. One of these sites features a cylindrical peg
with a radius of 1 mm that protrudes 15 mm from the board.
At this site, the conical shell actuator is mounted upside down
such that its axis of revolution is vertical and the peg makes
contact with the conical shell cap. The other site marks the
place on the lever for a weight that generates the external load
for the actuator.

Before conducting an experiment with this setup, steps 1-7
from S3.2 are carried out without any load present on the
actuator. Next, the following steps are taken to measure the
pressure-volume curve under external loading:

8. Place the desired weight on one side of the lever and
position the conical shell actuator above the peg at the
other side of the fulcrum. The vertical placement of the
actuator should be such that the lowest and highest angle
of the lever with respect to the horizontal plane are equal
in magnitude. This position minimizes the size of the
horizontal component of the force on the actuator since
it is proportional to the square of this angle.

9. Inflate the actuator up to the desired volume with the
LabVIEW program.

10. Push the lever down to break contact between the peg and
the conical shell, position it such that the peg touches the
center of the conical shell and release the lever again. This
step is required to relieve a shear load on the actuator
and a misalignment between the point of origin of the
force and the center of the conical shell cap. These effects
result from the combination of the second order horizontal
motion of the peg, the asymmetrical deformation of the
conical shell and the high coefficient of friction between
the silicone rubber actuator and the peg.

11. Deflate the actuator back to the starting volume with the
LabVIEW program.

12. Repeat step 10 and then 9 up to 11 until five full mea-
surement cycles have been completed.

S3.4. Measurements after cyclic loading. To measure the in-
fluence of strain-induced material degradation on the pressure-
volume characteristic of an actuator, we subject it to thousands
of identical high-amplitude inflation-deflation cycles. Since the
measurement setup described in S3.1 is only capable of slow
loading cycles, using this system for loading the actuator would
lead to a prohibitively long experiment duration. Therefore,
a separate loading system incorporating a proportional pneu-
matic valve (VEAB-L-26-D2-Q4-V2-1R1, Festo LTD) drives
the repeated inflation-deflation cycles. The measurement pro-
cedure then consists of alternatingly performing a number of
loading cycles with this loading system and then connecting
the actuator to the measurement system described in S3.1 to
characterize the PV characteristic.

Since the changes in the PV characteristic between subse-
quent measurements in this scheme can be small, potential
sources of random variations between measurements should
be avoided as much as possible. Therefore, we eliminate the
full reclamping and recalibrating procedure given by steps 1-7
in S3.2 between measurements of the PV characteristic by
connecting the loading system to the T-bore stopcock marked
(7) in Fig. S5. It then suffices to calibrate the measurement
system once and to turn the lever of the stopcock to connect
the actuator either to the loading system or to the already
calibrated measurement system. In this configuration, the ac-
tuator and the tube that connects it to the measurement setup
should be filled with water at all times as air bubbles skew the
measurements. However, the proportional valve in the loading
system is rated for use with gases only. The loading system
therefore includes a vertically mounted reservoir (CRVZS-0.75,
Festo LTD) partially filled with water and air acting as an
interface between air and water. The tube leading to the valve
attaches to the top of the reservoir and the tube leading to
the measurement system attaches to the bottom. In addition
to the reservoir and the valve, the loading system includes a
number of peripheral pneumatic and electronic components.
The pneumatic components include a connection to a cen-
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tralized supply of compressed air (5 bar), a pressure regulator
(LRP-1/4-10, Festo LTD) and another reservoir (CRVZS-5,
Festo LTD) to provide the valve with a constant supply of
air pressurized at 4 bar. The electronic components include
a voltage source (E0300-0.1, Delta Elektronika) to power the
valve and a microcontroller board (Arduino Uno) to generate
the pressure reference signal for the valve.

We use this setup for the measurements of the actuator
made of Dragon Skin 30 in Fig. 2B. In that experiment,
the applied loading signal is a trapezoidal signal with a rise
and fall time of 1 s and a pause of 4 s between every flank
such that the pressure signal and actuator deformation reach
equilibrium in every cycle. The pressure signal varies between
0 kPa and 30 kPa which is well above the pmax of the actuator
to accelerate the potential degradation. Due to visco-elastic
effects, the equilibrium pressure measured at a fixed volume
is lower for a measurement performed immediately following
the repeated loading cycles than for a measurement performed
some time later. This difference amounts to 0.5 kPa after 1000
successive cycles. This difference is significant and depends
on the hold time during each loading interval, so for the sake
of generality we only report values measured at least one hour
after completing the indicated amount of loading cycles.

S4. Pressure-volume curve simulation

S4.1. Finite element model dimensionality. All numerical sim-
ulations of the conical shell actuator deformation are car-
ried out with the finite element modelling software Abaqus
(Abaqus/CAE 2020, Dassault Systèmes). The simulation ge-
ometry is a 360° revolution of the cross-section in Fig. S1
around the axis of symmetry. While the deformation of the
conical shell actuator is axisymmetric for a large part of the
inflation and deflation cycle, it becomes unstable near the
snapping thresholds the deformation and transitions to an
asymmetric mode. Moreover, this asymmetry can occur in
different planes on inflation and deflation so the deformation
has no global symmetry. Therefore a simulation with an
axisymmetric description of the actuator deformation yields
inaccurate values for the snapping thresholds. As shown on
Fig. S8A, an axisymmetric simulation results in a delayed
occurrence of the isochoric snapping transitions. The corre-
sponding error on the isochoric snapping thresholds compared
to the values from a three-dimensional simulation exceeds 10 %
in a large part of the pθs, ts{roq-domain (Fig. S8B). A similar
error is made in the value for the isobaric snapping thresholds
on deflation. Therefore, we only report data obtained from
a 360° three-dimensional model even though it consumes an
order of magnitude more memory and processing time than
an axisymmetric simulation.

S4.2. Geometric imperfections. While a fully axisymmetric de-
formation trajectory of the conical shell is physically unstable,
it can be numerically stable if the geometry in the base state is
perfectly axisymmetric. In order to obtain physically accurate
asymmetric deformations in the 360° three-dimensional simu-
lation, non-axisymmetric imperfections breaking all symmetry
have to be introduced. Therefore, in all reported simulations
the stress-free geometry of the actuator is obtained by applying
an asymmetric displacement field to the axisymmetric base
geometry of Fig. S1.

In the literature on shell buckling, this displacement field

A B

Fig. S8. Influence of simulation dimensionality. A, Pressure-volume curves of
a conical shell actuator with θs = 45° and ts{ro = 0.1 resulting from a fully three-
dimensional and an axisymmetric simulation. Insets show a cross-sectional view of the
actuator deformation at the onset of the isochoric snap on inflation for both simulations.
B, Difference between the values for the snapping thresholds (isobaric thresholds
at the top, isochoric thresholds at the bottom) obtained from tree-dimensional and
axisymmetric finite element simulations for every data point in the geometric parameter
study. The difference is normalized by the snapping threshold on inflation. Different
data points for the same shell thickness ts{ro correspond to simulations with different
cone angles θs.

usually corresponds to a superposition of buckling modes of
the structure with a small scale factor applied (35). For most
structures, these buckling modes can be found cheaply as the
eigenmodes of the stiffness matrix in the unloaded state. This
is possible because these structures do not deform significantly
prior to buckling such that the stiffness matrices at the moment
of buckling and in the unloaded state are approximately equal.
However, for the conical shell actuator, the structure deforms
significantly prior to buckling which means that it has to be
preloaded to that configuration before solving the eigenvalue
problem. This requires a time intensive simulation just to
obtain the imperfections that should be applied to obtain
an accurate deformation of the actuator. Moreover, due to
the highly nonlinear behavior of the actuator, a buckling
mode analysis in Abaqus regularly finds modes that are not
physically accurate but concern only a small number of nodes
in the cylindrical wall. This means that performing buckling
modes is not an efficient and reliable method to generate
the imperfections for the 240 simulations in the geometric
parameter study.

Instead, we perform a buckling analysis on a single actuator
and describe the qualitative features of the buckling modes
(Fig. S9B) by three imperfection fields (Fig. S9A) that are
applied in every simulation reported in this research. These
buckling modes are obtained for a D4 conical shell actuator
(geometric parameters in Table S5) with a perfectly axisym-
metric geometry. The buckling analysis is preceded by a static
step with artificial damping in which the actuator is preloaded
to the configurations prior to the isochoric snapping transitions
on inflation and deflation. Based on the resulting buckling
modes, each imperfection field is defined as a C1 continuous
vector function with as inputs the coordinates of the undis-
turbed geometry. These three functions have zero magnitude
beyond the outer edge of the conical shell.

The first imperfection field corresponds to the global de-
formation of the conical shell in the majority of the buckling
modes. This global deformation is characterized by a rotation
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Fig. S9. Imperfections seeded in the simulated geometry. In every finite ele-
ment simulation, the axisymmetric geometry of the actuator is disturbed by three
displacement fields to facilitate convergence. These fields are an offset of the central
cap, a localized bump and a contraction of the cap and each of them is a qualitative
representation of a buckling mode of the conical shell. A, Geometry of the D4 ac-
tuator after applying each of the imperfections. The displacement fields have been
scaled by a factor of 100, 20 and 10, respectively, to improve visualization. The
color bar indicates the magnitude of the displacement field and the dashed lines
are the boundaries of the conical shell region of the actuator in the axisymmetric
reference geometry. B, Corresponding buckling modes of the D4 actuator applied as
deformation fields to the undeformed geometry. The color bar indicates the maximum
principal strain. The insets show the deformation of the actuator (bottom) and the
point on the pressure-volume curve (top) to which the actuator is preloaded before
applying the buckling analysis.

of the central cap around an axis perpendicular to the axis of
axisymmetry. It is caused by a difference in bending curvature
of the conical shell at both sides of the cap as shown by the dis-
tribution of the principal strain for the second buckling mode
on inflation in Fig. S9B. In order to induce this differential
curvature, the first imperfection field shortens one side of the
shell and elongates the opposite side by shifting the actuator
cap. Concretely, the deformation field displaces the cap by ϵs

along the x-axis of the coordinate system shown in Fig. S9A.
The displacement is uniform within the cap and tapers off to
zero following the function

δ⃗s “ ϵs ¨ e⃗x ¨

$

’

&

’

%

1 ρ ď 0
p1 ` cosπρq {2 0 ă ρ ď 1
0 ρ ą 1

, [2]

where ρ is the radial coordinate r normalized to go from 0 at
the inner edge of the conical shell segment of the actuator (see
Fig. S1) to 1 at its outer edge.

The second important feature in different buckling modes
is the concentration of stress in a relatively small area on the
conical shell as in the fourth buckling mode on deflation in
Fig. S9B. Physically, this stress concentration occurs at folds
in the shell with a high curvature for thin and steep shells. To

facilitate the nucleation of these folds, the second imperfection
field describes a localized bump normal to the conical shell.
The bump has a maximal elevation of ϵb and its profile is
defined by

δ⃗b “ ϵb ¨ e´p20ϕ{πq2
¨ p1 ´ cos 2πσq {2 ¨ n⃗, [3]

where n⃗ is the normal vector of the closest point on the upper
surface of the conical shell. σ is proportional to a coordinate
measured along the cone angle as r cos θs ` y sin θs and nor-
malized to go from 0 to 1 between the inner and outer edge
of the conical shell. The imperfection is only applied when
0 ď σ ă 1 and 0 ď ρ ă 1. Finally, ϕ is the angular distance
to the positive yz-plane. This places the apex of the bump in
the yz-plane and therefore breaks the only symmetry plane
remaining after applying the offset of the cap.

A third feature that appears in different buckling modes is
the folding of the cap around an axis in the xz-plane as in the
third buckling mode on deflation in Fig. S9B. This folding
likely results from an increasing uniform radial compression of
the central cap when the conical shell flattens. For a perfectly
circular cap there is no preferential direction for buckling which
can stall the simulation. Therefore, the third imperfection
contracts one axis of the central cap by a factor ϵc by applying
the deformation field

δ⃗c “ ϵc ¨ r ¨
`

cos pϕ` π{5q ` cos2
pϕ´ π{20q {4

˘

¨ ¨ ¨

¨ pcosπ{5 ¨ e⃗x ` sinπ{5 ¨ e⃗zq ¨ ¨ ¨

¨

$

’

&

’

%

1 ρ ď 0
p1 ` cosπρq {2 0 ă ρ ď 1
0 ρ ą 1

.

[4]

The resulting shape of the cap is egg-like. This shape breaks
symmetry and provides a single location for stress concentra-
tion at the edge of the cap analogously to the bump imper-
fection. The remaining symmetry axis lies in the xz-plane
and encloses an angle of π{5 radians with the x-axis. This
axis does not coincide with any other axis of symmetry and
therefore ensures that there is always a preferential direction
for the redistribution of stresses as the shell buckles.

The magnitudes of the three imperfection modes are con-
stant for all simulations. They are determined as approxi-
mately the smallest value for which all simulations converge
with the physically correct deformation. Following this crite-
rion, we set ϵs “ ro{1000 “ 10 µm, ϵb “ ro{200 “ 50 µm and
ϵc “ 0.025. To assess the influence of the precise magnitude of
these imperfections on the snapping thresholds, we perform a
series of simulations where either ϵs, ϵb or ϵc is changed while
keeping all other simulation parameters constant (Fig. S10).
These imperfection sensitivity studies confirm that the selected
magnitudes are small enough such that they do not introduce
a significant bias. They also show that the isobaric snapping
threshold on deflation consistently has the highest imperfec-
tion sensitivity of all snapping thresholds and that it is most
sensitive to ϵs over the examined parameter domain. However,
this sensitivity is negligible compared to the imperfection sen-
sitivity of spherical shells. In spherical shells a deviation of
100 µm on a 1 mm thick shell causes a change in the snapping
threshold by over 10 % (35), but for the conical shell actuator
the same imperfection magnitude leads to an error of at most
1 % on either snapping threshold. Moreover, for the machines
with which the brass molds are manufactured (see S2.1) the
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Fig. S10. Geometric imperfection sensitivity. A, Influence of the magnitude of
the cap shift imperfection ϵs on the behavior of the D5 actuator. (i) Simulated
pressure-volume curves with varying imperfection magnitude ϵs. (ii) Change in
the isobaric and isochoric snapping thresholds with respect to the simulation with
the smallest imperfection magnitude. All values are normalized with the snapping
threshold on inflation. B,C, Influence of the shell bump imperfection magnitude ϵb

and cap contraction magnitude ϵc on the pressure-volume curve. For the simulations
in each of the three subfigures, the two imperfection magnitudes that are not varied
explicitly are kept constant at default values ϵs{ro “ 0.001, ϵb{ro “ 0.005 and
ϵc “ 0.025.

accuracy is in the range of 10 µm and the tolerances on the
alignment pins and holes (diameter 2H7) are in the same range.
Therefore, any geometric imperfections in the molds do not
cause a deviation from the finite element model.

S4.3. Mesh generation. In Abaqus, the imperfect geometry is
generated by a python script. It first creates a mesh of the
perfectly axisymmetric geometry, then calculates the sum of
the local δ⃗s, δ⃗b and δ⃗c vectors and finally updates the mesh
node coordinates with the Abaqus editNode command. The
mesh of the axisymmetric geometry consists exclusively of
hexahedral C3D8RH elements and is generated by the native
Abaqus mesher operating in sweep mode on two partitions of
the geometry. The first partition contains every region apart
from in the central cap, and it features a mesh of concentric
rings with a constant amount of elements. Each ring has the
same amount of elements and therefore the element density
decreases with the distance from the central axis (Fig. S11A).
This gradient in element density is well suited to the deforma-
tion of the actuator as the deformation near the center of the

A
(i)

(ii)

B

Fig. S11. Finite element mesh. A, Top view (i) and cross-sectional side view (ii) of
the finite element mesh of a conical shell actuator. The coordinate system is as in
Fig. S9. B, Simulated pressure-volume curves for the D5 actuator with varying mesh
sizes ϵ. ϵ is defined as the height of the elements in the central cap region divided by
the shell thickness ts. T is the total wall time of the three-dimensional simulation in
hours.

actuator has high spatial frequencies, while the deformation
of the cylindrical wall is characterized by low spatial frequen-
cies. The second partition with only the central cap features
a mesh without a concentric structure. This distribution sup-
presses the occurrence of numerical artefacts at the pole of the
actuator, resulting in faster convergence and more accurate
simulation results than in the case of a fully concentric mesh.

The speed and accuracy of a simulation also depend on the
size of the elements in the mesh. Larger elements lead to a
lower element count and hence faster simulations, but a certain
amount of elements is needed especially across the thickness of
the shell to accurately capture the bending stress distribution.
We base the element size for all simulations based on a mesh
size study performed on the D5 actuator. Fig. S11 shows that
including more than four elements across the shell thickness
only marginally improves the accuracy of the simulated PV-
curve as the isochoric snapping thresholds shift by less than
3 %. At the same time, the simulation duration then at least
doubles. Therefore, the mesh size in all simulation is set to
one fourth of the thickness of the conical shell.

S4.4. Material model. Since the silicone material of the con-
ical shell actuator is nearly incompressible and experiences
strains in the order of tens of percent, it can not be described
accurately by a linear material model based on Hooke’s law.
Instead, a hyperelastic material model is required. Several
formulations for the strain energy density of such materials
exist with varying behaviors at increasing strains. In Fig. S12,
we repeat a simulation of a conical shell actuator for four such
material models. Three of the models have multiple parame-
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Fig. S12. Hyperelastic material models. Simulated pressure-volume curves for the
D5 actuator for different hyperelastic material models with initial shear modulus G.
Each material model is obtained by fitting to experimental data from uniaxial tensile
tests for different materials (42). On rescaling the pressure data by G, the curves
largely coincide regardless of the number of fitted model coefficients n.

ters which are fitted to experimental data for uniaxial tension
of Ecoflex 00-30 (for the Yeoh model), Dragon Skin 30 (for
the Ogden model) and Sortaclear 40 (for the Mooney-Rivlin
model) using the Soft Robotics Materials Database tool (42).
In all cases, we limit the datapoints for fitting to strains up to
60 % as higher strains do not occur in our simulations. The re-
sults show that after scaling the pressure data with the initial
shear modulus of the material G, the three models give similar
results for the pressure-volume curve. Moreover, a one-term
neo-Hookean material model with the same G as the Ogden
model fully captures the behavior of the actuator even though
it is a poor fit for the uniaxial test data. This shows that,
since the strains in the conical shell actuator remain relatively
limited, the influence of the material on pmax and pmin can
be modeled as uniform scaling with G.

Even so, the variation on especially the isochoric snapping
thresholds in Fig. S12 is significant with a relative standard
deviation of over 5 %. When the results of the geometrical pa-
rameter study are extrapolated to different materials, this can
lead to errors on the absolute values of the snapping thresh-
olds. To prevent errors in the relative order of thresholds for
different actuators, we therefore recommend a safety margin of
10 % between the thresholds of different actuators that should
follow a desired inflation and deflation sequence. Moreover,
we select the Ogden model for Dragon Skin 30 as the basis for
our parameter study because on average it has the smallest
deviation from the snapping thresholds for the three other
material models Fig. S12. The strain energy density is then
formulated as

U “
2µ1

α2
1

3
ÿ

i“1
pλα1

i ´ 1q `
2µ2

α2
2

3
ÿ

i“1
pλα2

i ´ 1q , [5]

with λi the three principal stretches. The values for the model
parameters given in Table S3.

Other material parameters include D1 and D2 which define
the material compressibility. For a lack of compressibility data
on Dragon Skin 30, the parameters are set zero. This defines
the material as practically incompressible and requires the use
of elements with a hybrid formulation for hydrostatic pressure
to ensure convergence. Finally, since we perform dynamic

µ1 α1 µ2 α2

170 kPa 3.5 −88 kPa 0.48
D1 D2 ρ α β

0 Pa−1 0 Pa−1 1080 kg/m3 0.018 s−1 0.018 s
Table S3. Abaqus material model parameters

Fig. S13. Self-contact friction model Simulated pressure-volume curves for the
D4 actuator for different coefficients of static friction µ in the self-contact interaction.
The curves fully coincide on inflation as there is no self-contact. On deflation, self
contact occurs during and between the isochoric snapping transitions. Different µ

shift these transitions as shown on the enlarged section of the pressure-volume curve
in the inset, but this shift is negligible.

simulations, a complete material model includes inertia and
damping. For the density ρ of Dragon Skin 30, we use the value
provided in the material datasheet. For damping, rigorously
obtained data on the viscoelastic properties of silicone rubber
are rare so we use Rayleigh damping with the sole purpose of
numerically stabilizing the isochoric snapping transitions in
the simulation. Since the coefficients α and β have no physical
significance, their value should be as low as possible in order
not to distort the simulation results. Therefore, we obtain
the values for α and β in Table S3 by slowly increasing their
values until simulations converge over the full range of the
(θs, ts{ro) parameter space under consideration. To minimize
the effect of the damping parameters on the simulated PV
curve, we select a large simulation time scale (see S4.5).

S4.5. Boundary conditions and loading. Both in the physical
actuator and in the finite elements model, three mechanisms
constrain the allowed deformation of the conical shell actuator.
First, in the physical actuator the bottom of the cylindrical wall
features a downward extension, a flange, and a toroidal ring
which are clamped as described in S2.3. In the finite element
model, this geometry and the stiff clamping assembly is not
modeled, but replaced by a fully fixed boundary condition
for of all nodes on the bottom face of the cylindrical wall.
Additionally, the pressure-volume curve of physical actuators
is measured under volume control so any deformation of the
actuator has to respect the imposed cavity volume. The
corresponding boundary condition in the finite elements model
is a hydraulic fluid cavity interaction defined on the inner
surface of the actuator. Finally, in some physical actuators the
motion of the conical shell is constrained by self-contact. This
mostly occurs for thick and deep shells when folds appear on
the inside of the conical shell as the actuator approaches the
isochoric snapping transition on deflation. In the finite element
simulations, a self-contact interaction on the inner surface
avoids self-intersection of the mesh. The contact interaction
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Fig. S14. Simulation time scale. Simulated pressure-volume curves for the D5
actuator for different in-simulation step durations Ts for both inflation and deflation.
Smaller step times lead to a larger contribution of inertial and damping effects that
skew mainly the isochoric snapping thresholds when Ts is smaller than 60 s

has an exponential model for the normal behavior and models
the tangential behavior as static friction. Data on the exact
coefficient of friction of silicone rubbers in self-contact is rare in
literature, so we set µ “ 1.15 which is a conservative estimate
for the static friction coefficient between soft vulcanized rubber
and glass (43). However, the exact value for the friction
coefficient has a negligible influence on the PV characteristic
as shown by the simulations of the D4 actuator on Fig. S13.
In these simulations, contact governs the isochoric snapping
transitions on deflation but these threshold change by less
than 0.5 % when the friction coefficient changes from 0.8 to
1.5 Therefore, we assume that friction is modelled accurately.

The pressure-volume characteristic of the actuator under
volume control is simulated in two implicit dynamic steps. In
one step, the actuator is inflated from its stress-free config-
uration until the shell snaps to the high-volume state. The
maximum volume in this step is determined by first perform-
ing an approximate axisymmetric simulation, extracting the
volume reached directly after the isobaric snapping transition
on inflation and increasing it by a margin of 5 %. The other
step decreases the actuator volume until the actuator has
snapped back to the low-volume state and the volume is 5 %
lower than the volume after isobaric snapping on deflation in
the axisymmetric simulation. This gradual volume-controlled
inflation and deflation is simulated by applying a volumetric
flux to the hydraulic fluid cavity interaction using the Fluid
flux keyword in the simulation input file. Within the bulk
of each step, the flux has a constant amplitude but it ramps
up and down to zero at the start and end of the step to
avoid excessive accelerations. Moreover, enabling the flags
for nonlinear geometry, moderate dissipation and adaptive
time stepping flags in the step definition facilitates relatively
fast convergence in the presence of the discontinuous isochoric
snaps.

The modeled duration of each step is determined by the time
scale study depicted in Fig. S14. It shows that for time step
durations of less than 60 s, the isochoric snapping transitions
are less steep than in quasi-static simulations with a higher
duration. The reason is that a decrease in step duration
corresponds to an increase in the applied volumetric flux so
more volume is added or removed while the shell deforms with
finite speed during the snapping transition. Another effect is
that for a short step duration the velocity of the deformation
is higher so damping plays a larger role and increases the

hysteresis loop. However, the figure shows that by selecting a
step duration of 120 s, we limit all these effects and obtain the
quasi-static pressure-volume curve. With this step duration,
there is a large difference in the velocity of the actuator shell
between the quasi-static deformation and the highly dynamic
isochoric snapping transitions. As a compromise between
the wall time of the simulation and the time step resolution
during the snapping transitions, an adaptive time incrementing
scheme is used with the maximum step size limited to 1.8 s.

S5. Simulation data processing

S5.1. Isobaric snapping characteritics. The process of defin-
ing and submitting every conical shell actuator simulation
is automated with a python script run from the Abaqus in-
terface. When a simulation finishes, the script also creates
a file in the JavaScript Object Notation format containing
the simulation parameters and results. These results include
data for the cavity pressure and volume. In Abaqus, these
quantities are tracked by the cavity variables PCAV and CVOL,
respectively. While the inflation of the actuator in the simula-
tion is volume-controlled, it is possible to identify the points
at which isobaric snapping transitions would occur if pressure
would be controlled instead. The reason is that the isobaric
snapping transitions are triggered at the first local maximum
in pressure encountered during inflation and the first local
minimum in pressure on deflation. The end point of such an
idealized snapping transition has the same pressure as that
threshold but a higher volume in the case of inflation and a
lower volume in the case of deflation.

To improve the accuracy beyond the time step resolution
of the simulation, we obtain the snapping threshold by fitting
a quadratic polynomial through data points surrounding the
local extremum and calculating the apex of this polynomial.
Next, we linearly interpolate the actuator volume CVOL at both
the start and end point of each isobaric snapping transition and
take the difference to find the jump in volume ∆V |pmax

and
∆V |pmin

on inflation and deflation, respectively (Fig. S15A).
The vertical strokes ∆y|pmax

and ∆y|pmin
result in the same

manner from the data for the vertical displacement of the
shell apex monitored in Abaqus as U2 (Fig. S15B). Finally,
the released energies on inflation and deflation ∆U |pmax

and
∆U |pmin

are equal to the sum of the change in elastic en-
ergy of the actuator ∆Uin and the fluidic work performed
by the pressure supply during the snapping transition. The
former is given by the difference in the Abaqus variable ALLIE
(Fig. S15C) and the latter by the product pmax ¨ ∆V |pmax

for
inflation and pmin ¨ ∆V |pmin

for deflation.

S5.2. Isochoric snapping characteristics. Since simulations
occur under volume control, isochoric snapping transitions do
not manifest as local extrema in the pressure-volume curve but
as rapid volume-preserving motions of the actuator. While
in most cases this motion results in a clearly identifiable ver-
tical flank in the PV curve, this is not the case in all of our
simulations. The reason is that between two subsequent time
increments covering the snap, either the difference in pressure
is small or the difference in volume is large. The former case
occurs for actuators with large θs and ts{ro that snap between
two configurations with distinct deformation modes but similar
equilibrium pressures. The latter case occurs when the solver
converges quickly despite the discontinuity, such that the time
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Fig. S15. Extracted characteristics for isobaric snapping. A, Simulated pressure-
volume curve for the D5 actuator under volume control showing the isobaric snapping
thresholds pmax and pmin and the isobaric snapping transitions on inflation (right
pointing arrow) and deflation (left pointing arrow). The change in internal actuator
volume during these snapping transitions is ∆V |pmax

and ∆V |pmin
, respectively.

B, Relation between the vertical displacement of the shell apex ∆y and the actuator
pressure for the same simulation. The arrows indicate the same transitions as
on subfigure A and represent a stroke of ∆y|pmax

and ∆y|pmin
. C, Relation

between the internal elastic energy ∆Uin and the actuator pressure for the same
simulation. The change in the internal energy during the isobaric snapping transitions
is ∆Uin|pmax

and ∆Uin|pmin
and is used to calculate the released energy.

increment is not decreased automatically and the constant
volumetric flux results in a large increase in volume. Because
of these limitations, there is no precise way of identifying the
start and end point of the isochoric snaps from the pressure
and volume data alone.

Regardless of the difference in pressure or the size of the
time increment, however, every isochoric snapping transition
results in an increase in the energy dissipated by material
damping over the entire model ALLVD as this dissipation is
required to stabilize the solution. Because of the viscous damp-
ing and because of inertia, the rate at which this dissipation
occurs is spread as a peak over time where the first base of the
peak indicates the effective start of the snapping transition.
To find the thresholds that mark the start of these transitions,
we first identify all peaks in the dissipation rate that mark
distinct snapping transitions. These peaks must satisfy the
following conditions:

• The peak dissipation rate needs to be sufficiently high
compared to the average dissipation rate in the volume
interval before the isobaric snapping threshold is reached.
In that interval, the deformation is unconditionally sta-
ble so the deformation is always quasi-static. Since in
irreversible snapping transitions the average velocity is
an order of magnitude higher than in fast but reversible
motions, we only retain peaks that are ten times higher
than the quasi-static level.

• At both sides of the peak, there needs to be a continu-
ous interval over which the volume changes significantly
while the dissipation rate remains sufficiently low. Such
a dwell in energy dissipation is only assigned to the peak
if between the dwell and the peak, the dissipation rate
never exceeds the dissipation rate at that peak. These
dwells then correspond to the quasi-static branches be-
tween which the transition occurs. If there are multiple
peaks that are not separated by such a dwell, in prac-
tical applications it is impossible to reliably pause the
inflation at the intermediate branch. Therefore, the snap-
ping transitions are practically indistinguishable and we
only retain the one with the highest peak dissipation rate.

Quantitatively, we put the threshold for the maximum
dissipation rate in the dwell on half the dissipation rate of
the peak and the threshold for the minimum width of the
dwell on 2 % of the full volume scale in the simulation.

• The total energy dissipated between the two dwells flank-
ing the peak needs to be sufficiently high. This filters
out short-lived peaks due to simulation artefacts caused
mainly by poor stabilization of the self-contact that oc-
curs in actuators with a high cone angle. Assuming
that all true snapping transitions dissipate energy in the
same order of magnitude, we reject any peak with a total
dissipated energy less than one-tenth of the maximum
dissipated energy over all peaks.

Next, we identify the start and end point of each isochoric
snap as the points at either side of the corresponding peak
where the energy dissipation rate is sufficiently low. These
points are the volume at which the dissipation rate drops below
the threshold of ten times the average quasi-static dissipation
rate. In case this threshold value is not reached in between
two consecutive snapping transitions, the point at which the
dissipation rate reaches its minimal value between the two
peaks is selected instead. For each peak, two points meet
those conditions. The one that occurs before the peak is the
isochoric snapping threshold and the one that occurs after it
marks the end of the snapping transition.

We interpolate PCAV at both points and take their differ-
ence to obtain the change in pressure associated with the
isochoric snap ∆p|∆Vmax

for inflation and ∆p|∆Vmin
for de-

flation. These changes in pressure occur at nearly constant
volume, so the source that drives the inflation does not per-
form work during these snapping transitions. Therefore, the
released snapping energies ∆U |∆Vmax

and ∆U |∆Vmin
are the

plain differences in ALLIE over the course of the snaps. Finally,
since the deformation of the shell at the start of the isochoric
snaps is asymmetric, there is no straightforward definition for
the stroke of the actuator so we do not report data on it.

S5.3. Load-sensitivity of isobaric snapping thresholds. As
shown experimentally in Fig. S7, a constant external force Fy

parallel to the axis of revolution of the actuator and applied
in the center of the conical shell modifies the pressure-volume
characteristic. This effect can be captured accurately using
the finite element framework of S4 with the addition of a
preloading step prior to inflation. In this initial step, Fy is
applied as a uniformly distributed force acting on every mesh
node covering the actuator central cap. The magnitude of
Fy ramps up linearly over the step time of 30 s. Next, the
magnitude is fixed for the rest of the simulation and inflation
and deflation take place as described in S4.5.

Instead of performing a dedicated simulation to assess the
effect of Fy on the isobaric snapping thresholds pmax and pmin,
this relation can also be estimated by processing the data of
a simulation without an external load. This follows from the
energy balance of a quasi-static inflation of the actuator in
the presence of Fy:

ż

p dV “ UintpV q ` FyypV q, [6]

where Uint is the internal elastic energy in the actuator and y
is the axial displacement of the shell apex. Compared to the
case without external loading, a load Fy produces a different
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Fig. S16. Estimating load sensitivity. Simulated pressure-volume curves for the D5
actuator conducted with and without loading with an external force Fy concentrated
at the shell apex. The change in pressure between both simulations is estimated by
the product of Fy and the derivative of the vertical apex displacement y with respect
to volume V in the simulation without external load.

equilibrium deformation for the same volume. Therefore,
the functions UintpV q and ypV q depend on the constant load
Fy. However, if it is assumed that the effect of Fy on the
deformation is negligible, the pressure in the presence of an
external load can be expressed as

ppV, Fyq «
dUint

dV

ˇ

ˇ

ˇ

ˇ

Fy“0
` Fy

dy

dV

ˇ

ˇ

ˇ

ˇ

Fy“0
. [7]

The derivatives dUint{dV and dy{dV can be calculated from an
Abaqus simulation without external load by taking the finite
differences of ALLIE and U2 with respect to CVOL. Moreover,
for such a simulation the last term in equation 6 disappears.
This means that the fluidic work is fully converted to the
internal energy such that equation 7 simplifies to:

ppV, Fyq « ppV, 0q ` Fy
dy

dV

ˇ

ˇ

ˇ

ˇ

Fy“0
, [8]

and the sensitivity of the internal pressure to external loading
to

dp

dFy
«

dy

dV

ˇ

ˇ

ˇ

ˇ

Fy“0
. [9]

Fig. S16 compares the pressure-volume curve of an actua-
tor obtained from a simulation with an external load to the
estimation obtained from applying equation 8 to a simulation
without loading. The estimation aligns well with the dedicated
simulation for low volumes and accurately predicts the offset
in pressure at the initial volume. It also correctly predicts a
low sensitivity to Fy at high volumes where the high internal
pressure increases the stiffness against loading. Moreover, the
isobaric snapping thresholds in the presence of Fy are well ap-
proximated by evaluating equation 8 at the volumes at which
isobaric snapping initiates in the simulation without loading (

and on Fig. S16).
However, the accuracy of the estimation for the isobaric

snapping thresholds produced by equation 8 is limited by two
factors. On the one hand, the accuracy decreases for high
external loading because the estimation does not take into
account the influence of Fy on the actuator deformation. This
reduces the accuracy of the linear estimation for high loading.
For the isobaric snapping thresholds the resulting error only
becomes pronounced towards the end of the range where Fy

does not eliminate isobaric snapping (Fig. S7B). Therefore,
for practical purposes this effect is of minor importance. On
the other hand, for intermediate volumes equation 8 produces
inaccurate results even when Fy is small. In particular, the
estimation diverges from the dedicated simulation near the
isochoric snapping transitions. This is caused by the rapid
displacement of the shell apex while the volume remains ap-
proximately constant such that dy{dV increases dramatically.
As a result, the slope of dy{dV at the volume where isobaric
snapping initiates is large if that volume is close to the iso-
choric snapping threshold. A small change in the estimation
for the volume corresponding to pmax or pmin then causes a
large change in the prediction for the isobaric snapping thresh-
old under loading. In this case, the result of equation 8 is
highly sensitive to numerical noise in the simulation and not
practically usable. This issue only becomes significant for a
small part of the performed simulations and only for pmin, so
in the majority of cases equation 8 is sufficiently accurate for
the design of conical shell actuators.

S6. Inverse design

S6.1. Selection chart generation. For the purpose of designing
conical shell actuators with certain values for the isobaric
snapping threshold on inflation pmax, we plot a selection chart
consisting of contours of pmax{G over the (θs, ts{ro)-domain.
All points that lie on such a contour correspond to actuator
geometries with the same pmax{G, so overlaying these contours
on contours of other actuator properties allows to find the
geometry that has a particular value for the snapping threshold
and for the other property (see S6.2). We generate these
contours based on data resulting from a geometric parameter
study. The parameter study runs a finite element simulation
for every sample of (θs, ts{ro) in a rectangular grid where θs

varies from 20° to 55° in steps of 2.5° and ts{ro varies from
0.05 to 0.2 in steps of 0.01.

In this study, only samples with a high θs and a low ts{ro

feature an isobaric snapping transition. This means that the
contours of pmax only exist in that region of the domain. To
find the precise boundary of this region, we track the values of
both the snapping thresholds pmax for inflation and pmin for
deflation. The difference pmax ´ pmin is a continuous function
that is always positive within the region and that tends to zero
on approaching the region boundary. Beyond that boundary,
the function is undefined but it is possible to extrapolate
the positive values that exist within the region to negative
values outside of the region. We achieve this by linearizing
pmax ´ pmin at each sample point that lies just within the
region boundary and evaluating these linear functions at the
points on the (θs, ts{ro)-grid that lie outside the boundary.
This leads to multiple estimates for each sample point that
lies outside the boundary, which we combine by taking the
arithmetic mean. With positive values inside the region and
negative values outside it, the marching squares algorithm
finds the contour line where pmax ´ pmin crosses zero. This
interpolated contour line then marks the continuous boundary
of the region in (θs, ts)-space where isobaric snapping exists
and pmax and pmin have a value.

To obtain smooth contours of the characteristic over this
entire region, we fill this region with a fine triangular mesh of
which the maximum edge length is 4 % of the domain width.
Then, we apply a spatial gaussian filter with a small standard
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Fig. S17. Design for isobaric snapping characteristics. A, Contours of the isobaric snapping threshold on inflation pmax in the (θs, ts{ro)-plane. The levels indicated by
the labels on the contour lines are normalized by G, the initial shear modulus of the actuator material. B, contours of the energy release associated with the isobaric snapping
transition on inflation ∆U |pmax

normalized by Gr3
o , where ro is the outer radius of the actuator. These contours are overlaid on the contours of pmax{G duplicated from

subfigure A (lightly colored). The inset show the range of combinations of pmax{G and ∆U |pmax
{Gr3

o covered by the simulated data set. Bold lines at the edge of the
range indicate data points at the edge of the values that were considered for θs (dashed lines) and ts{ro (dotted lines) in the data set. At these lines, the range can therefore
be extended by considering values for θs and ts{ro beyond the bounds used data set. At the other edges, the range might be extended by refining the step size of the data set.
C, D, contours of, respectively, the change in volume and vertical apex displacement (i.e. the stroke) between the start and end of the isobaric snapping transition on inflation.
E, contours of the isobaric snapping threshold on deflation pmin. F, G, H, contours of, respectively, the energy release, the change in volume and the stroke associated with
the isobaric snapping transition on deflation. They are overlaid on the contours of pmin{G from subfigure E. For the change in volume and displacement of the apex, the
absolute value is reported.

deviation of 5 % the domain width to the simulated data for
pmax to remove numerical noise. Next, we evaluate the value
for pmax at every mesh node by cubic interpolation on the
filtered sample data. Finally, we generate the contours using
the tricontour function from the python matplotlib library.
For other actuator characteristics associated with isobaric
snapping, such as the threshold on inflation, the stroke of
the snapping motion or the energy released during snapping,
we use the same region mesh. For characteristics associated
with isochoric snapping, the boundary of the region where
they exist is found as the zero contour line of the difference in
isochoric snapping thresholds. Because the identification of the
isochoric snapping thresholds is more sensitive to numerical
noise, a stronger spatial filter with a standard deviation of
7 % the domain width is used, but apart from that the same
protocol is followed.

S6.2. Design for two target variables. Given a pair of desired
isobaric snapping thresholds p̄max and p̄min, the method de-
scribed in section S6.1 allows to generate the matching contours
of pmax and pmin in the (θs, ts{ro)-domain. If these contours
intersect, the x- and y-coordinate of the intersection point
correspond to the values for θs and ts{ro that yield the desired

set of thresholds. Instead of generating the precise contours
for p̄max and p̄min for a specific application, it is also possible
to use a generic plot of contours at selected levels as shown in
Fig. S17E. The procedure to find the required cone angle and
thickness for a desired p̄max and p̄min is then as follows:

1. Generate a dimensionless representation of the desired
isobaric snapping thresholds p̄max and p̄min by dividing
both values by the initial shear modulus G of the intended
actuator material.

2. Verify that p̄max{G and p̄min{G lie within the do-
main of possible combinations spanned by the data set
(see the inset on Fig. S17E). If this is not the case but
the data set contains points with the same p̄max{p̄min, a
different material with a higher G can be selected. Other-
wise, the data set can be extended beyond the boundaries
indicated by the dashed and dotted lines by perform-
ing simulations with values for θs and ts{ro outside the
currently considered domain, respectively.

3. Identify the contours on Fig. S17A and E that correspond
to the desired values for p̄max{G and p̄min{G, respectively.

4. Find the intersection point of the selected contours. In
case no contours are reported with the exact values for
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Fig. S18. Design in the presence of external loading. Contours of the sensitivity of
the isobaric snapping thresholds to an external load Fy applied to the shell apex. The
same conventions as in Fig. S17 are used. A, Contours of the load-sensitivity of the
isobaric snapping threshold on inflation dpmax{dFy in the (θs, ts{ro)-plane. They
are overlaid on the contours of pmax{G duplicated from Fig. S17A (lightly colored).
B, Contours of the load-sensitivity of the isobaric snapping threshold on deflation
overlaid on the contours of pmin{G from Fig. S17E. In the darker shaded area of
parameter space, the contours are extremely sensitive to numerical noise so can not
be used for tuning.

p̄max{G and p̄min{G, round them to the nearest contour
levels. The exact intersection point can then be found
through interpolation, but since we observe that the model
prediction error is of the same magnitude as the difference
in level between subsequent contours, interpolation only
leads to a marginally more accurate result at best.

5. The cone angle θs for the actuator with the desired com-
bination (p̄max, p̄min) corresponds to the horizontal coor-
dinate of the intersection point. Multiplying the vertical
coordinate with the desired outer radius ro of the actuator
yields the shell thickness ts.

The same procedure applies to the design of conical shell
actuators for other characteristics associated with the isobaric
snaps such as the release of energy or the changes in volume and
apex displacement using the other sets of contours in Fig. S17.
For example, with the contours in Fig. S17D it is possible to
design a conical shell actuator with a particular pmax and asso-
ciated snapping stroke ∆y|pmax

. Similarly, Fig. S18 presents
the contours of the sensitivity of the snapping thresholds pmax

and pmin to an external load Fy. It facilitates the design of
an actuator with different snapping thresholds based on the
load it experiences. However, these contours are obtained
using the approximative equation described in S5.3 so their
accuracy is limited. For actuators with a high ts{ro in partic-
ular, the estimate for the load sensitivity is highly dependent
on the volume at which the isobaric snapping threshold is
reached. The load sensitivity then changes significantly if it
is evaluated at the simulated time increment right before or
after the increment at which the isobaric snapping threshold
is reached. In Fig. S18, the darker shaded area represents
the region where the difference in the estimate varies with
more than 50 % between those time increments. The contours
in this area are shaped primarily by numerical noise rather
than by physical trends so can not be used for design. Apart
from this limitation, all contours in Fig. S17 and Fig. S18 can
be combined to design conical shell actuators with arbitrary

combinations of characteristics.
Finally, the procedure also extends to characteristics as-

sociated with the isochoric snapping transitions. However,
conical shell actuators with high θs and low ts{ro feature two
distinct isochoric snaps with significant energy release on both
inflation and deflation. On the plots in Fig. S19, this mani-
fests as contours splitting in two branches at the point where
a second snap develops. As for the non-branching contour
plots of Fig. S17, all branches of a contour connect actuator
geometries with the same snapping characteristic. For the
branch marked by the solid line, on the one hand, this charac-
teristic is associated with the last isochoric snap to occur on
inflation or deflation. For the dashed line, on the other hand,
this characteristic is associated with the penultimate isochoric
snap.

This means that either plot in Fig. S19 also serves to design
actuators with particular characteristics for the two isochoric
snaps on either inflation or deflation. For example, the param-
eters that result in a PV-curve with thresholds ∆V a

max and
∆V b

max for, respectively, the last and penultimate transition
on inflation correspond to the intersection point between the
solid contour at level ∆V a

max and the dashed contour at level
∆V b

max on Fig. S19A. For practical applications, an actuator
designed in this way only has added value if it is possible to
reliably trigger the first transition without triggering the last
(see also S5.2). Since this is only possible if the difference
between the two snapping thresholds is sufficiently large, the
darker shaded areas on Fig. S19 indicate the regions where
that difference exceeds 5 % of r3

o. Finally, there also exists
a region at the highest values for θs and the lowest values
for ts{ro where three distinct snapping transitions occur on
deflation. The energy release for that third transition is signif-
icantly lower than for the other two snaps, however, so we do
not report data for this third snapping transition in Fig. S19.

S6.3. Design for up to four target variables. In the procedure
for designing a conical shell actuator with a particular com-
bination of isobaric snapping thresholds in S6.2, the initial
shear modulus G of the actuator material is a given. If there
is no restriction on the actuator material apart from the one
in step 2 of that procedure, however, G can vary over a large
continuous range. In practise, this is possible by varying
mixing ratios between prepolymers and cross-linking agents,
the fraction of an additional silicone thinner and the curing
temperature profile. G then becomes an additional degree of
freedom for designing conical shell actuator for certain target
characteristics of the PV-curve.

The same combination of θs and ts{ro can realize an infinite
number of different PV curves with different values for pmax

and pmin by varying the material from which an actuator with
that geometry is made. However, the influence of G on these
characteristics is limited to scaling all pressure values linearly,
as shown analytically by a dimensional analysis, numerically
by the study in S4.4 and experimentally by the measure-
ments in Fig. 2A. This means that the ratio pmin{pmax for
all characteristics generated by the same geometry but differ-
ent materials is constant. Consequently, a PV-curve with a
target value for (p̄max, p̄min) can be achieved by any actuator
geometry where the ratio of the isobaric snapping thresholds
equals p̄min{p̄max when G is chosen appropriately. Graphi-
cally, all these designs lie on the contour line of pmin{pmax
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Fig. S19. Design for isochoric snapping characteristics. Contours of the isochoric snapping transition characteristics in the (θs, ts{ro)-plane using the same conventions
as in Fig. S17. A, Contours of the isochoric snapping threshold on inflation ∆Vmax. The darker shaded area indicates the region of the (θs, ts{ro)-plane where the actuator
has multiple of those transitions that are practically distinguishable. In that case, the solid contour lines refer to the last transition that occurs on inflation, and the dashed contour
lines refer to the penultimate transition on inflation. B, C, Contours of the energy release and the change in pressure associated with the isochoric snapping transition on
inflation. These contours are overlaid on the contours of ∆Vmax{r3

o duplicated from subfigure A (lightly colored). D, Contours of the isochoric snapping threshold on deflation
∆Vmin. Here, the solid and dashed lines refer to the last and the penultimate isochoric snapping transition on deflation, respectively. F, G, Contours of, respectively, the
energy release and the change in pressure associated with the isochoric snapping transition on deflation. They are overlaid on the contours of ∆Vmin{r3

o from subfigure D.

with level p̄min{p̄max in the (θs, ts{ro)-domain. A contour
plot of pmin{pmax (Fig. S20A) is therefore a graphical tool
to design actuators where G is a degree of freedom in the
design process. The same reasoning applies to other actuator
metrics expressed in terms of pressure such as the jumps in
pressure associated with isochoric snaps (Fig. S19B and C).
Moreover, a similar reasoning as for G holds for the outer
radius of the actuator ro. It is considered a given in S6.2 but
as a design variable, it scales all actuator metrics related to
displacements with ro and all metrics related to volume with
r3

o. Therefore, contour plots of ratios of metrics expressed in
volume or displacement allow to graphically design actuators
with ro as an additional degree of freedom.

Contours of a ratio of pressures can be superimposed on
any other contour in Fig. S17 or Fig. S19 that does not in-
volve G as normalization parameter to design an actuator
for three target variables. It can also be superimposed on
contours of ratios of volumes or displacement to design an
actuator for four target variables. This allows to find θs, ts,
G and ro for an actuator with for example a desired set of
isobaric and isochoric snapping thresholds (p̄max, p̄min) and
(∆V max, ∆V min), respectively, using the following procedure:

1. Compute the desired ratios of the isobaric and isochoric
snapping thresholds p̄min{p̄max and ∆V min{∆V max.

2. Verify that both ratios lie within the domain of possible
combinations spanned by the data set (Fig. S20C). If this

is not the case, the data set can be extended with simu-
lations with values for θs and ts{ro beyond the currently
considered domain.

3. On Fig. S20B, identify the contours that correspond most
closely to p̄min{p̄max and ∆V min{∆V max and find the
(θs, ts{ro)-coordinate of the intersection between the two
contours.

4. Mark the same (θs, ts{ro)-coordinate on Fig. S17A. In-
terpolate the contours of pmax{G to find the level ϕ for
which the contour would go through the marked point.
G is then obtained as p̄max{ϕ Similarly, mark (θs, ts{ro)
on Fig. S19A, find the level ψ for which ∆V max{r3

o goes
through that point and find ro as 3

b

∆V max{ψ. Multiply
this value for ro by the vertical coordinate of the marked
point to find ts. The horizontal coordinate of the marked
point corresponds to θs.

For the contours of ∆Vmin{∆Vmax on Fig. S20B we do not
consider all isochoric snapping transitions that occur on in-
flation and deflation as that would lead to a high number of
branching lines that would render the graph illegible. Instead,
for both ∆Vmax and ∆Vmin we select the last isochoric snap
that occurs on inflation and deflation, respectively. Never-
theless, for a small range of combinations for pmin{pmax and
∆Vmin{∆Vmax indicated by the darker region in Fig. S20C,
the matching contours intersect twice. This means that for
those values, two actuators with different geometries and
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Fig. S20. Simultaneous design for isobaric and isochoric snapping characteristics. A, Contours of the ratio between the isobaric snapping thresholds pmin{pmax in the
(θs, ts{ro)-plane. B, Contours of the ratio between the isochoric snapping thresholds ∆Vmin{∆Vmax overlaid on the contours of pmin{pmax duplicated from subfigure
A. ∆Vmin and ∆Vmax refer to the last isochoric snapping transitions to occur on deflation and inflation, respectively. The highlighted contours for pmin{pmax “ 0 and
∆Vmin{∆Vmax “ 0.7 have two intersection points A1 and A2, with different geometric parameters but similar PV curves. C, Range of combinations of pmin{pmax and
∆Vmin{∆Vmax covered by the numerical parameter study. As in Fig. S17, bold lines indicate data points on the boundary of the considered range for θs (dashed lines) or
ts{ro (dotted lines) in the numerical parameter study. At these lines, the range of combinations can be extended by considering simulations with more extreme values for θs

and ts{ro, respectively. In the region colored in dark orange, multiple geometries realize the same combination. D, PV curves for geometries A1 and A2 from subfigure B, with
the actuator outer radius ro and material shear modulus G determined such that A1 and A2 have the same isobaric and isochoric snapping thresholds (values in Table S4).

materials exist that feature similar PV-curves with identical
values for both the isobaric and isochoric snapping thresholds
but differ in the stroke or energy of the snapping transitions.
Fig. S20D shows a pair of such actuators with the values for
the target thresholds as well as the actuator parameters given
in Table S4.

Table S4. Design procedure input and output for designing actuators
A1 and A2 on Fig. S20

procedure input procedure output
variable target variable value for A1 value for A2

pmin 0 kPa θs 39.7° 50.5°
pmax 10 kPa ts{ro 0.066 0.111
p-ratio 0 pmax{G 0.0090 0.0356

∆Vmin 0.7 mL G 1.12 MPa 0.28 MPa
∆Vmax 1 mL ∆Vmax{r3

o 0.397 0.804
∆V -ratio 0.7 ro 13.6 mm 10.7 mm

S7. Qualitative sequence design

S7.1. Formal description of a sequence. In order to design a
system that performs a certain task, the task must first be
formalized. Here, we abstract a task as a series of actions
performed in a given sequence. These actions can correspond
to for example an actuator undergoing a snapping transition
or reaching a certain volume or deformation. Every distinct ac-
tion that is relevant for the task receives a unique symbol and
all those symbols are gathered in the alphabet A. The task is
then represented as a sequence of those actions by the combi-
natorial word w “ a1a2a3 ¨ ¨ ¨ . Every letter ai in word w is a
symbol from alphabet A and multiple ai can refer to the same

symbol, meaning that the same action is carried out at differ-
ent points in the sequence (44). For the application of playing
“Ode to Joy” on a piano keyboard, an action corresponds to
playing a note so A “ tD4, G4, A4, B4, C5, D5u contains the
involved notes and w “ B4B4C5D5D5C5B4A4 ¨ ¨ ¨ encodes the
melody.

In the proposed underactuated system of hysteretic ele-
ments, there is one input pressure signal pc while there are
multiple independent state variables. These states are the
cavity volumes of the different conical shell actuators that are
connected to the common input. In such a system, the actions
in a word w correspond to the state variables reaching certain
variables. For the qualitative design of an underactuated sys-
tem, only the relative order of these actions is relevant and the
time intervals between subsequent actions can be disregarded.
The reason is that we consider quasi-static systems where the
actuators react instantaneously to the common input signal
pc. In that case, the timing between subsequent actions can
be varied by changing the time scale of the input signal alone
so the timing is independent of the design of the actuators.
Therefore, w suffices to determine the design of the actuators
even though abstracting the task as the combinatorial word w
only retains information on the relative order of the different
actions.

S7.2. Finding the sequences that a given system can produce.
Within the framework of S7.1, the task of playing music on
a piano is abstracted as the sequence w in which notes are
played. In our setup, a note is played whenever an actuator
undergoes the isobaric snapping transition on inflation at pmax

(Fig. S21A). Therefore:
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Fig. S21. Operation of a single actuator playing a note. A, Diagram of an actuator
pressure-volume curve with the isobaric snapping thresholds on inflation (pmax,
) and deflation (pmin, ) and the region where the key is in the up and the down
state. The pictograms at the top show the physical configuration of the actuator and
the piano key in both states. The note symbol shows at which point the note is played.
B, Simplified notation of the actuator characteristic in subfigure A that only retains
the values of pmax and pmin. C, Response of the actuator to a pressure signal
pcptq. marks the isobaric snap on inflation at pmax, which is accompanied by
the playing of the note A as shown in the timeline above the graph. marks the
isobaric snap on deflation at pmin.

Rule 1. Playing a note

If actuator A is in the retracted state and pcptq ą pmax,A,
then and only then note A is played.

After this event, the played note quickly fades out and any vari-
ation in pcptq that stays above pmin,A produces no additional
note A. Note A can only be played again by first dropping pc

below pmin,A to retract the actuator and then increasing pc

again to satisfy Rule 1 (Fig. S21C). Since pmax and pmin are
the only parameters that affect this qualitative behavior, in
subsequent figures we simplify the PV curves of all actuators
to one dimensional plots that only show the values of pmax

( ) and pmin ( ) (Fig. S21B).
Given a fixed distribution for the values of pmax and pmin,

different sequences can be produced by varying pcptq. However,
for every possible distribution of pmax and pmin in a system
with three or more actuators, there exist some sequences which
can never be played regardless of the pcptq that is applied.
The reason is that for any three actuators in the system, they
can be labeled as A, B and X for which it is impossible to
first play A and later B without triggering the undesired
note X in between. For example, Fig. S22A shows a system
where notes A and B are played by actuators with thresholds
pmax,A ă pmax,B and pmin,A ă pmin,B . To play note A and
then note B in this configuration, pcptq must go from pmax,A

to pmax,B . Therefore, if an actuator exists with a pmax in
between pmax,A and pmax,B and it is in the retracted state at
the moment when A is played, by Rule 1 it will be played before
B is played. This is the case for actuators X and Y in the
beginning of the sequence pictured in Fig. S22A because the
starting pressure is lower than any of their pmin thresholds. As
a result, the sequence AXY is produced instead of the desired
sequence AB. To avoid playing the undesired notes, actuators
X and Y must be in the extended state before A is played.
For Y this can be achieved. A then needs to be retracted by
dropping the pressure to pmin,A but keeping it above pmin,Y

so Y stays in the extended state when A is played as shown
in Fig. S22A. However, since pmin,A ă pmin,X , this action
always retracts X first so X always interrupts the sequence
AB. Since pmin,B does not factor into this reasoning, the
same scenario occurs in a system with pmax,A ă pmax,B and

pmin,A ą pmin,B as shown in Fig. S22B. This results in the
following system behavior:

Rule 2. Unavoidable notes I

If pmax,A ă pmax,X ă pmax,B and pmin,A ă pmin,X ,
then any played sequence starting with A and ending
with B unavoidably contains X in between.

The other possible situation is that pmax,A ą pmax,B . In
this case, B and any other actuator with a pmax lower than
pmax,A is always in the extended state when A is played.
Therefore, B can only be played after A when pcptq is subse-
quently decreased below pmin,B to retract B. If pcptq is ramped
up immediately after this point, all actuators such as Y on
Fig. S22C-D with a pmax,Y ă pmax,B and a pmin,Y ă pmin,B

remain in the extended state so Rule 1 is not triggered for
them before B is played. Actuators such as X, on the other
hand, have pmin,X ą pmin,B so they are reset to the retracted
state before B such that:

Rule 3. Unavoidable notes IIa

If pmax,X ă pmax,B ă pmax,A and pmin,B ă pmin,X ,
then any played sequence starting with A and ending
with B unavoidably contains X in between.

When A and B refer to the same actuator, the above reasoning
stays valid and X is played within any two occurrences of A:

Rule 4. Unavoidable notes IIb

If pmax,X ă pmax,A and pmin,A ă pmin,X ,
then any played sequence starting with A and ending
with another occurrence of A unavoidably contains X in
between.

To formalize these rules, we note that the conditions of
rules 2-4 put no constraints on the relative values of pmax of
one actuator with respect to pmin of another actuator or on
the absolute values of pmax and pmin. Therefore, the range
of sequences that can be played by a system only depends
on the relative order among the pmax of its actuators on the
one hand, and the order among their pmin on the other hand.
Formally, these relative orders are represented by the words
smax and smin which both feature one letter for each actuator
in A in the order of ascending pmax and pmin, respectively. As
an example, for the system shown in Fig. S22A, the snapping
threshold orderings are smax “ AXY B and smin “ Y AXB.
We also introduce the notation wB

A to mean any subword
of word w that starts with letter A and ends with letter B
later in w but does not contain any A or B in between. For
example, in the sequence w “ ABCABAC, wC

A refers to ABC
and AC but not to ABAC. wA

A refers to any subword of w
starting with A and ending with another A without any A in
between, so in the example wA

A refers to BC and B. With
these constraints, rules 2-4 can be rephrased as:
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Fig. S22. Constraints on playable sequences. A-D, All possible arrangements of peaks and valleys for a pair of actuators A and B. In every case, actuator X always is an
example of a note that will always be played directly between A and B. Actuator Y is an example of a note that can appear directly between A and B but is avoidable when it
is played before A and is not reset to down state when A is reset. For each subfigure, the left panel shows the condensed representation of the pressure-volume curves of the
actuators with their names above as in Fig. S21B. The right panel shows the pressure signal pcptq required to play A and then B without Y appearing in between and shows
the inevitability of playing X. As in Fig. S21C, the letters above the plot indicate the sequence of notes that is played over time.

Rule 5. Sequences that can be played

A sequence w can be played with orders smax and smin

if and only if for every set of notes A, B and C (B and
C can be identical) ordered as A ă B ď C in smax

(I) all subsequences wC
A contain B if A ă B in smin

(II) all subsequences wB
C contain A if A ą B in smin

For a system with only two actuators, in Rule 5 B and
C are taken to be the same. If smin “ AB, only case (I)
remains which is trivially satisfied because any wB

A contains
B by definition. A system with smax “ AB and smin “

AB can therefore play any sequence w of arbitrary length
that only contains two distinct notes. For any system with
three or more actuators, however, every set of three distinct
actuators A,B,C will lead to a case (I) or (II) that is nontrivial
so it is impossible to play sequences containing AC or CB,
respectively. Therefore, no single system is capable of playing
all sequences containing three or more distinct notes and an
algorithm is required to find a system that can play a particular
sequence.

S7.3. Finding the systems that can produce a given sequence.
The problem of finding the threshold orderings smax and smin

that satisfy Rule 5 belongs to the class of constraint satisfac-
tion problems (45, 46). In this framework, the variables are
the positions in smax and smin, the domain of each of those
variables is the set of actuators A and the constraints are those
imposed by 5. A simple algorithm to find all solutions to the
constraint satisfaction problem is to loop over all possible com-
binations of threshold orderings smax and smin and for each
combination check whether the constraints are satisfied or not.
This check can be performed efficiently by first constructing a
binary lookup table which for any three actuators A, B and
C indicates whether wB

A contains C or not. Verifying Rule 5

then amounts to evaluating a value in this lookup table for
every set of actuators ordered as A ă B ď C in smax. If a
system contains h hysteretic actuators, this amounts to a total
of hph´ 1qph´ 2q{3! evaluations involving three actuators and
hph´1q{2! evaluations involving two actuators. For example, a
system with h “ 8 requires a total of 84 evaluations to confirm
that a given system can play a given sequence. This number of
evaluations takes in the order of 10 µs for a python script run-
ning on an Intel Core i7-8650U processor clocked at 1.9 GHz.
Even though the time to check a single (smax, smin) is low,
looping over all possible combinations requires performing this
procedure ph!q2 times. For h “ 8, this already results in a run
time of over 10 hours so a brute force approach is not practical
for designing systems that can play complex sequences.

More efficient solving strategies have been developed in
the field of constraint programming. These strategies can be
classified as complete or incomplete, where incomplete solving
strategies are generally efficient in finding solutions, but it is
not guaranteed that they find one if one exists (45). Since
in many practical cases the amount of orderings that can
produce a certain sequence is rare (see S7.5), we opt for a
complete solving strategy that is guaranteed to find all possible
solutions or proves that no solution exists. The core principle
of most complete solvers is a backtracking scheme in which
a solution is constructed variable by variable and checked
in every intermediate state. In case such an intermediate
solution does not satisfy the constraints, all solutions that
can be constructed from this partial solution are eliminated
without evaluating them all. Complete solvers differ in the
degree of inference they do on the constraints to detect whether
a partial solution inevitably leads to a conflict later on or not.
A higher degree of inference reduces the number of partial
solutions that needs to be evaluated but increases the effort
to evaluate each partial solution (45).

This trade-off in performance is well documented for prob-
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lems where every constraint involves one or two variables but
not in case more variables are involved. The problem of find-
ing a system that satisfies Rule 5 falls in the latter category
because every constraint on a triplet (pair) of notes involves
three (two) positions in smax and two positions in smin for a
total of five (four) variables per constraint. For the lack of
documentation on solver performance in this case, we limit
our algorithm to a basic backtracking strategy without algo-
rithmic inference. However, a general guideline to increase the
efficiency of solvers is to reduce the number of variables in-
volved in each constraint (46). Therefore, in our algorithm we
construct the solution in such a manner that some constraints
only involve three variables. Although the efficiency of the
solver can be improved by applying techniques established in
constraint programming on this transformed set of constraints,
the efficiency of our algorithm is already sufficient for most
practical applications (see S7.5).

In our formulation, the backtracking algorithm builds smax

one actuator at a time. At the start of the algorithm, s0
max is

empty. In any subsequent recursion step i, si
max is a partial

ordering containing i actuators. The algorithm then selects
one actuator from alphabet A covering w that is not part of
si

max and adds it to the end of that ordering to form si`1
max.

Next, the algorithm verifies whether or not sequence w is
compatible with si`1

max. If this is the case, a new recursion step
starts to generate si`2

max. Otherwise, the actuator that was
newly added to the ordering is replaced by another actuator
that is not included in si

max and recursion continues with
the updated si`1

max. This process continues until the partial
ordering contains all actuators in A or until all valid candidate
actuators are exhausted over all recursion steps.

With this approach, a large range of possible si
max can be

eliminated without evaluating them all. The reason is that
building smax exclusively by appending actuators guarantees
that if si

max fails to produce the desired sequence w, inevitably
all smax and smin that can be generated from this partial
ordering fail to produce w as well. This follows from further
analysis of case (I) and (II) in Rule 5. Case (I) states that for
every A ă B ă C in smax and A ă B in smin, all wC

A must
contain B. This also means that wB

A can never contain C. If
this would not be the case and wB

A would contain C between
A and B, then it would contain a subword wC

A which by case
(I) would contain B. wB

A would then contain another B in
between A and B, which directly contradicts the definition of
wB

A in S7.2. An analogous reasoning shows that case (II) also
means that for any A ą B in smin, wB

A can never contain C.
Therefore, Rule 5 imposes the following constraint on smax

regardless of the order of A and B in smin:

Rule 6. Constraint on smax

If a system with A ă B ă C in smax plays a sequence w,
then no subsequence wB

A can contain C.

Consequently, any subsequence starting with an actuator A
and ending with an actuator B with a higher pmax can only
include actuators with a lower pmax than B. In the algorithm,
actuators are added to si

max exclusively in the last position.
Therefore, any actuator C that is not part of si

max will occupy
a higher position in smax than any actuator A that is part of
si

max. This means that as soon as Rule 6 fails for an A and B
in a partial si

max because wB
A contains a C not part of si

max

at that point, then it also fails for any si`1
max. This result is

independent of the order in which actuators are added to si
max

or the possible ordering of all actuators in smin. By the same
logic, Rule 6 limits the range of candidate actuators that can
be appended to si

max and for which recursion should continue:

Rule 7. Eliminating candidates to append to si
max

If actuator B R si
max and there exists an A P si

max such
that a wB

A contains other actuators C R si
max

then B can not be appended to si
max to form si`1

max.

If in an iteration j ą i all actuators C that trigger Rule 7 for
an actuator B and si

max have been incorporated in sj
max, B

can then be appended in the next recursion step.
Whenever an actuator is added to si

max, it generates a
number of constraints on the relative positions in smin of
this actuator and every other actuator in the partial ordering.
These constraints follow directly from logically inverting Rule
5:

Rule 8. Constraints on smin

If actuator B is added at the end of si
max to form si`1

max,
then sequence w can only be played if for all A P si

max,
C R si`1

max:

(I) A ą B in smin if any wC
A does not contain B

(II) A ă B in smin if any wB
C does not contain A

Since every constraint involves only one actuator C of which
the position in si

max is not yet fixed, the constraints that are
generated for B are independent of the order in which these
actuators C are added to form the final smax. Therefore, if
the constraints in Rule 8 that are generated in recursion step
i contradict the constraints generated in previous recursion
steps, then si

max can never lead to a valid solution. As is
the case for Rule 7, B can then be eliminated as a candidate
to be appended to si

max until all actuators C that cause the
conflicting constraints have been added to smax first.

To check for such conflicts, the algorithm maintains a set
SA for every actuator A in A which contains all actuators
that have to occupy a higher position than A in the final
smin. Whenever Rule 8 generates a new constraint A ă B,
SA is extended with B. Moreover, SA is extended with every
element C in SB because A ă B and B ă C imply that
A ă C. A conflict then occurs if SA comes to contain A
as that would mean that A ă A. If a complete smax is
reached without the appearance of such conflicts, the algorithm
generates all possible orderings smin that are compatible with
the constructed set of constraints. It constructs these orderings
by recursively adding actuators to a partial si

min defined in
the same way as si

max. In every recursion step, it selects
an actuator A that does not appear in SB for all B not in
si

min, and adds it to the end of si
min to find si`1

min. When
the algorithm terminates, it has found all possible orderings
smax and smin with which a sequence w can be played. The
complete algorithm is summarized in Algorithm 1

S7.4. Finding the input signal that produces a given sequence.
The algorithm described in the previous section finds possible
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Algorithm 1 Qualitative sequence design algorithm

Input w: desired sequence of snap-through events.
Input si

max: optional ordering of thresholds on inflation.
Empty by default.

Input Si: optional lookup table with SA for every actuator
A. All SA are empty by default.

Output ϕ: all psmax, sminq that can play w where the first
i elements of smax are given by si

max.

1: function getOrdering(w, [si
max, Si])

2: ϕ Ð H

3: // terminate recursion
4: if si

max contains all actuators that appear in w then
5: for smin compatible with Si do
6: ϕ Ð ϕ Y psi

max, sminq

7: // find candidates to add to si
min

8: for B P w and R si
max do

9: canBeNext Ð true
10: Si`1

Ð Si

11: for A P si
max do

12: for C R si
max do

13: // Rule 7
14: if C ‰ B and C P at least one wB

A then
15: canBeNext Ð false
16: // Rule 8 (I)
17: if C ‰ B and B R all existing wC

A then
18: Si`1

B Ð Si`1
B YAY Si`1

A

19: if B P Si`1
B then

20: canBeNext Ð false
21: // Rule 8 (II)
22: if A R all existing wB

C then
23: Si`1

A Ð Si`1
A YB Y Si`1

B

24: if A P Si`1
A then

25: canBeNext Ð false
26: // continue recursion
27: if canBeNext then
28: si`1

max Ð si
max with B added at the end

29: ϕ Ð ϕ Y getOrdering(w, si`1
max, Si`1)

30: return ϕ

orderings for the isobaric snapping thresholds psmax, sminq

that can realize a desired sequence w when the appropriate
input signal pc is applied simultaneously to all actuators. A
separate algorithm generates pc in function of the found order-
ing. It represents pc as a word where every letter corresponds
to the threshold of a snapping transition that should be trig-
gered at that point in the sequence. This means that for every
element in pc that represents a pmax, the input should increase
beyond it while staying below all higher pmax at that point
in the sequence. Similarly, for every pmin in pc, the pressure
should decrease below it to trigger the transition on deflation,
but stay above all lower pmin. Therefore, a pair of adjacent
elements in pc puts an upper and lower limit on the values
that the physical input signal can reach in the time interval
between both snapping transitions. Every input signal that
stays within these limits at all times performs the desired
sequence, irrespective of the exact profile it follows.

Algorithm 2 summarizes the approach to generate pc given
a sequence and a valid ordering for the snapping thresholds.

It initializes pc as a word with one letter corresponding to the
pmax of the last actuator in smax. This puts all actuators in the
extended state by playing them all in the order of smax before
the sequence starts. After this initialization, the algorithm
loops over every note A of the sequence in chronological order
and adds thresholds to pc depending on the relation between
pmax,A and the last entry in the partial pc. If pmax,A is lower
than the last entry in pc, then A is in the extended state after
applying the partial pc. By Rule 1, A has to be retracted
first before the note can be played. Therefore, the input
signal is decreased first. In particular, the algorithm continues
pc with the lowest possible pmin that does not disrupt the
sequence when the input will be increased later on. Next,
pmax,A is added to the end of pc in order to play note A. If
instead pmax,A is higher than the last entry in pc, then the
algorithm guarantees that A is in the retracted state at that
point. Therefore, pc does not need to decrease at that point
and the algorithm adds pmax,A directly to the end of pc.

Algorithm 2 Input signal design algorithm

Input w: desired sequence of n snap-through events.
Input smax: ordering of all h thresholds on inflation.
Input smin: ordering of all h thresholds on deflation.
Output pc: signal that realizes w when applied to all actua-

tors with threshold orderings (smax, smin).

1: function getSignal(w, smax, smin)
2: pc Ð pmax of last element of smax

3: for i Ð 0..n do
4: A Ð actuator at index i of w
5: if pmax,A ă last element in pc then
6: j Ð index of A in smin

7: canBeRetracted Ð true
8: while canBeRetracted and j>0 do
9: B Ð actuator at index j ´ 1 of smin

10: k Ð i` 1
11: while k-th actuator of w ă B in smax do
12: k Ð k ` 1
13: if k-th actuator of w ď B in smax then
14: j Ð j ´ 1
15: else
16: canBeRetracted Ð false
17: B Ð the actuator at index j of smin

18: pc Ð pc with pmin,B added at the end
19: pc Ð pc with pmax,A added at the end
20: return pc

Whenever the algorithm decreases pc to the pmin,A of an
actuator A, all actuators B with B ě A in smin are retracted.
By Rule 1, B will then play its note as soon as pc exceeds
pmax,B . Similarly, playing a note C with C ą B in smax

requires that pc ą pmax,C ą pmax,B . This means that if B is
retracted together with A, it is always played between this A
and the next C:

Rule 9. Actuators that can not be retracted

If after a point in sequence w, a C ą B in smax appears
in w and B does not appear before it,
then B can not be retracted at this point.
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Fig. S23. Generating the input signal to drive a sequence. A, Simplified nota-
tion of an example system with smax “ ADlBDhC, smin “ BDlDhAC.
B, Input signal pcptq (profile shaded in light blue) to generate the sequence
w “ CADhACADlABDhC for the example system. The resulting snapping
transitions on inflation and deflation are marked by and , respectively. The bold
horizontal lines indicate the segments of the sequence where the actuator with the
matching pmin can be retracted without inevitably disturbing the sequence further
on. By Rule 9, they appear whenever no actuator with a higher pmax occurs before
the next occurrence of the considered actuator in the sequence.

The algorithm evaluates this criterion for every B and de-
creases pc to the lowest pmin for which none of the actuators
that trigger Rule 9 are retracted. This is illustrated for an
example system on Fig. S23 where the bold colored lines rep-
resent the part of the sequence where Rule 9 is not triggered
for a given actuator. It is possible that the rule allows the
retraction of an actuator B together with A, but not of another
actuator D ą B in smin. In that case, the algorithm does not
retract B. However, it is guaranteed that in every interval of
the sequence over which B does not trigger Rule 9, there is a
point where all actuators D ą B in smin do not trigger Rule
9 either. At that point, pc can decrease enough to retract B
and its note can be played on the next occurrence of B in w.
The proof of this statement consists of two cases.

The first case concerns actuators Dh ą B in smax as in
the example system in Fig. S23. By Rule 7, no subsequence
w

Dh
B can then contain actuators with a higher pmax than Dh.

Moreover, since B does not trigger Rule 9 when A has to
be played, the interval of w between A and B only contains
actuators with a pmax ă pmax,B ă pmax,Dh . Therefore, the
entire interval of the sequence between A and the first Dh

after it only contains actuators with a pmax ă pmax,Dh . As a
result, every Dh ą B in smax does not trigger Rule 9 over the
entire interval where B does not trigger it either.

The second case concerns actuators Dl ă B in smax. Since
the full interval over which B does not trigger Rule 9 is always
preceded by a C ą B in smax, case (II) of Rule 5 applies and
Dl inevitably appears between C and B. It is possible that
this C does not appear explicitly in the sequence before B, but
in that case it is played implicitly during the initialization of
pc. The same C that triggers Rule 9 for B in some part of the
sequence triggers that rule also for Dl since Dl ă B in smax.
Therefore, every interval over which B does not trigger Rule 9
contains both the start and end of the same interval for Dl.
If of all actuators Dl has the lowest pmin larger than pmin,B ,
this means that Dl can be retracted somewhere between C
and B. Next, both cases of the proof can be applied to any
actuator D1

l ą Dl in smin to prove that they can be retracted
between C and Dl. This can be repeated recursively until no
more actuators with a higher pmin are left. At that point, it
has been proven that for every note that needs to be played in
w, the algorithm is able to retract the actuator in time such

that the entire sequence is played correctly.

S7.5. Algorithm performance. Given any sequence w of length
n with exactly h ď n distinct elements, the qualitative design
algorithm described in S7.3 finds all orderings of the isobaric
snapping thresholds (smin, smax) that can realize w. It is
possible that multiple solutions exist, but also that no solution
exists which means that it is impossible to realize sequence w
with the proposed underactuated framework. In this section,
we apply the design algorithm to a range of sequences with
different n and h to generate statistics on the expected number
of solutions as well as the efficiency of the algorithm.

In order to limit the number of sequences that has to be
sampled to generate accurate statistics for a given n and h,
only non-equivalent sequences are sampled. Two sequences are
equivalent if it is possible to consistently relabel the elements
of one sequence to obtain the other sequence. For example,
w “ ABCAAB is equivalent to w1

“ CABCCA because w1

results from w by relabeling A to C and B to A and C to
B. Since the precise element labels are irrelevant for the
design algorithm, the solutions for w1 can be obtained by
applying the same relabeling to the solutions for w. Every
sequence has h! ´ 1 equivalent sequences, all of which have
the same number of solutions and require the same number
of steps in the algorithm. Therefore, it is possible to reduce
the number of sequences that needs to be sampled by a factor
h! without skewing the solution statistics by only considering
non-equivalent sequences.

To prevent sampling equivalent sequences, for a given n
and h we generate sequences as lists of integer in the range
r0, h´ 1s where an integer hi can only appear in the sequence
if all lower integers r0, hi ´ 1s already appear in the sequence
preceding it. The number of such sequences is given by the
Stirling numbers of the second kind:

Spn, hq “
1
h!

h
ÿ

k“0
p´1q

k

˜

h

k

¸

ph´ kq
n, [10]

which can also be calculated through the recursive relation:

Spn, hq “ h Spn´1, hq ` Spn´1, h´1q, [11]

with h ď n and Spn, hq “ 1 if h “ 1. In the context of non-
equivalent sequences, the two terms in equation 11 correspond
to the two ways in which a sequence of length n with exactly h
unique elements can be generated from a sequence with a lower
n or h. The first option is to start from one of the Spn´1, hq

sequences that are one position shorter and append either of
the h elements that appear in those sequences to it. The second
option is to start from one of the Spn´1, h´1q sequences that
also feature one less unique symbol and add the new symbol
h´1 to it. With this method, it is possible to map every
integer i P r0, Spn, hq´1s to a distinct sequence as illustrated
by Algorithm 3. This recursive algorithm is used in two ways to
generate the sequence samples to which the design algorithm is
applied for a given n and h. For small n and h, it is possible to
iterate exhaustively over all non-equivalent sequences within
a reasonable time. Algorithm 3 is then applied for every
integer in the interval r0, Spn, hq´1s. However, Spn, hq quickly
grows with n and h and the exhaustive sampling scheme
then becomes prohibitively slow. Therefore, the Monte Carlo
method is used as soon as Spn, hq exceeds 104, which occurs
at the dashed white contour line in Fig. S24. In that case,
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A B C

Fig. S24. Qualitative sequence design statistics. A, Some sequences can not be achieved by any (smin, smax) with the proposed underactuated architecture. The color
of each cell represents the fraction α of all sequences with length n involving exactly h unique elements that can be achieved with our architecture. Selected contours of α are
shown as solid white lines. Inside of the contour for α “1, sequences exist that are not achievable. The diamond markers indicate h that yields the lowest α for every value of
n in this area. The corresponding α-values are plotted in the inset. B, Most sequences that can be achieved by a particular ordering (smin, smax) have more than one
equivalent solution. The color of each cell represents the average number of equivalent solutions µ for all sequences of length n with h unique elements that have at least one
solution. The inset shows the probability that a sequence with n “12 and h “5 (diamond marker) has more than m solutions in function of m. C, The qualitative sequence
design algorithm is called recursively for every sequence until it either finds a solution or finds that there is no solution. The color of each cell represents the average number of
function calls as a fraction η of the number of permutations of (smin, smax). Above the contour line for η “1, the design algorithm is more efficient than an exhaustive
search. The inset shows the average of η over all h for a given n. The data points outside of the dashed line are obtained by exhaustively iterating over all possible sequences
and those inside the line are generated from randomly sampled sequences.

Algorithm 3 Generating a unique sequence from an integer

Input n: length of the sequence w.
Input h: number of unique elements in the sequence w.
Input i: integer in the range r0, Spn, hq ´ 1s.
Output w: sequence represented as a list of integers.

1: function generateSequence(n, h, i)
2: if n ď 1 or h ď 1 then
3: w Ð list of n zeros
4: else if i ě h Spn´1, hq then
5: i Ð i´ h Spn´1, hq

6: w Ð generateSequence(n´1, h´1, i)
7: w Ð w with h´1 added at the end
8: else
9: hi Ð ti{Spn´1, hqu

10: i Ð i´ hi Spn´1, hq

11: w Ð generateSequence(n´1, h, i)
12: w Ð w with hi added at the end
13: return w

104 distinct random integers in the interval r0, Spn, hq´1s are
generated and Algorithm 3 is only applied with those integers
as i to provide the samples for the design algorithm. This
method guarantees that every possible sequence has the same
probability of being sampled so that the Monte Carlo sampling
does not introduce a bias in the solution statistics.

Both in the case of exhaustive and Monte Carlo sampling,
the generated sequences with a certain n and h are processed
in the same way. The qualitative design algorithm is applied
to every sequence sample to find all possible orderings that
realize that sequence. Next, a number of metrics is calculated.
The first metric α is the ratio between the total amount of
sequences for which a solution was found and the total amount
of sampled sequences at the given combination of n and h. For
all points that lie outside of the solid white line in Fig. S24A,
all sampled sequences have a solution so α is exactly equal to

1. In particular α “ 1 for any n and h ď 2 or n´ 2 ď h ď n.
For h ď 2, this follows from that fact neither case in Rule 5
is triggered if smin “ smax. Case (I), on the one hand, does
not apply because it involves three distinct symbols while the
sequence has at most two. Case (II), on the other hand, does
not apply because smax and smin have the same order.

For h ě n´ 2, all symbols in a sequence occur once apart
from one or two symbols X and Y . Therefore, a sequence
can be rewritten in terms of X and Y and blocks of symbols
separating them, where no two blocks have symbols in com-
mon. For example, w “ A1A2XB1B2Y C1C2Y D1D2XE1E2
contains blocks A1A2, B1B2, C1C2, D1D2 and E1E2. Any
two symbols A1 and A2 within the same block have the same
constraints on their positions in smax and smin relative to any
symbol B or C that does not appear in that same block. This
follows from Rule 5 where A1 and A2 are equivalent for case
(I) because all B that appear in wC

A1 do so after the block
containing A1 and A2, so they also appear in wC

A2 . Similarly,
A1 and A2 are equivalent for case (II) because if a wB

C contains
A1, it contains the full block that A1 belongs to including A2.
Because all symbols A1 and A2 within the same block in the
sequence share the same constraints with respect to symbols
outside of their block, they can also appear as a block in smax

and smin. Moreover, if A2 appears after A1 in the block in
the sequence, then any existing wC

A1 contains A2. Therefore,
if A1 and A2 appear in the same order in smax and smin as
in their block in the sequence, the constraints on their mutual
order are satisfied by Rule 5 (I). This means that blocks of
actuators that appear once in the sequence can always appear
as the same blocks in smax and smin. These blocks then act
as a single unit and can be substituted by a single symbol in
the sequence without affecting the constraints. Any sequence
with h ě n´ 2 can therefore be rewritten as a sequence with
at most nine elements and at most seven unique symbols. For
example, the sequence at the beginning of this paragraph re-
duces to w “ AXBY CY DXE. An exhaustive search shows
that any such sequence with pn, hq “ p9, 7q can be realized by
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an ordering (smax, sminq, so all sequences with h ě n´ 2 can
be realized as well.

Fig. S24A shows that α ă 1 if pn, hq is p7, 3q, p8, 3q or p8, 4q

or if n ą 8 and 2 ă h ă n´ 2. Otherwise, α decreases mono-
tonically with increasing n if h stays constant. For constant
n, α reaches a minimum around h « 0.37n as indicated by
the diamond markers on Fig.S24A. The inset shows that this
minimum in α drops below 0.5 for n ě 14 and then converges
to zero for large n. As a result, the proposed underactuated
architecture is only a practical solution for short sequences, se-
quences with a small number of distinct symbols or sequences
where most symbols occur only once.

A second metric of interest is the average number of solu-
tions for all sequences that have at least one solution, denoted
as µ. As shown on Fig. S24B, on the one hand this metric
decreases with n because on average the number of constraints
generated by Rule 5 increases with n. On the other hand,
µ increases dramatically with h because smax and smin then
have more positions so any constraint on the position of two
elements in those orderings can be satisfied in many ways.
While the average µ can be high, in general the distribution
of the number of solutions is skewed towards a small number
of solutions. For example the inset on Fig. S24B shows the
probability that a sequence has more than m solutions for
pn, hq “ p12, 5q. In this case, some sequences feature over 25
solutions, but they only represent 0.1 % of all sequences with
a valid solution. Instead, more than half of all achievable se-
quences have between one and four solutions. This shows that
on average, valid solutions for (smin, smax) are rare, limiting
the utility of brute force and incomplete constraint satisfaction
problem solvers.

A final metric measures the efficiency with which the algo-
rithm navigates the space of all possible orderings (smin, smax).
The efficiency is defined as the ratio between the number of
recursive function calls required to find all solutions for a
given sequence and the total number of possible (smin, smax)
combinations ph!q2. This ratio is averaged over all sampled
sequences for a combination of pn, hq to produce the metric η.
Fig. S24C shows that η ą 1 for h ă 4. This means that the
design algorithm then checks more than ph!q2 combinations
which is due to the fact that it also checks partially completed
orderings psi

max, s
i
minq. The design algorithm is then less effi-

cient than an exhaustive search through all possible orderings,
but since h is small, both methods find all valid orderings
quickly. If h ě 4, however, η drops steeply such that the
design algorithm quickly outperforms an exhaustive search
by orders of magnitude. For example, the design algorithm
checks less than one in every thousand possible orderings for
h “ 7. η also decreases with increasing n, although this de-
pendence is less pronounced than with h. These two effects
cause a decrease in the average value for η over all sequences
with a fixed length n approximately following the relation
log10pηavq “ ´0.077n1.97 as shown on the inset in Fig. S24C.
In conclusion, the design algorithm is highly efficient and
therefore allows to easily design underactuated systems for
highly complex sequences.

S8. Demonstrator design

For the melody of “Ode to Joy”, the sequence design algo-
rithm yields the solution smax “ G4A4D4B4C5D5, smin “

D4G4A4B4C5D5. In theory, any set of pmax and pmin that

Fig. S25. Tuning actuators for the piano demonstrator. Contours of the isobaric
snapping thresholds in the (θs, ts{ro)-plane with markers indicating the thresholds
and geometric parameters for the actuators involved in the piano demonstrator. The
parameters of these actuators are chosen such that the resulting snapping thresholds
respect smax “ G4A4D4B4C5D5 and smin “ D4G4A4B4C5D5 while
staying within the lightly shaded region. Within that region, the difference in the apex
displacement between the two states of the actuator p y|pmin

´ y|pmax
q{ro ą

0.35 and the sensitivity of the snapping threshold on inflation to variations in the
manufactured geometry 1{G ¨ dpmax{dθs ă 0.002 and ro{G ¨ dpmax{dts ă 1.

respects these orderings can play the sequence. In the practical
demonstrator, however, there are additional constraints on
the allowable values for pmax and pmin. A first constraint
is that the difference in the desired pmax or pmin between
any two actuators should be high enough. This prevents
that uncontrollable variations in the material stiffness increase
the snapping threshold of one actuator above another one,
which would result in a different smax or smin. Moreover,
pressure fluctuations due to a limited precision of the pres-
sure controller can then trigger undesired snapping transitions.
Because of this constraint, we limit the minimal difference
between the snapping threshold of different actuators made
from PDMS (G “701 kPa) to 1.8 kPa. A second constraint
is that the difference between the geometric parameters of
any two actuators should be large enough. Otherwise, small
imperfections in the dimensions or the alignment of the molds
can affect the resulting smax and smin. Therefore, we only
consider geometries where pmax does not change by more than
1.8 kPa if the cone angle changes by 1.3° or the cone thickness
by 26 µm. On Fig. S25, these geometries lie below the lines
dpmax{dθs “ .002 G and dpmax{dts “ 1.0 G{ro. The final con-
straint is that in the keyboard demonstrator the displacement
of the conical shell apex should be low enough such that the
actuator does not contact the key throughout the retracted
state. Moreover, the displacement should be high enough such
that the key registers contact throughout the extended state.
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note color θs ts{ro

D4 black 52.9° 0.094
G4 blue 39.7° 0.079
A4 green 40.0° 0.102
B4 yellow 44.5° 0.125
C5 orange 45.3° 0.136
D5 red 46.3° 0.144

Table S5. Actuator parameters for the piano demonstrator

Both the highest displacement in the retracted configuration
and the lowest displacement in the extended configuration
appear at the respective snapping thresholds. Therefore, we
only consider geometries to the right of the line at which
y|pmin

´ y|pmax
“ 3.5 mm on Fig. S25.

With those three constraints, the actuators have to be
placed in the lightly shaded area of Fig. S25. This results in
the geometric parameters listed in table S5. Finally, conical
shell actuators with those parameters are manufactured out
of PDMS following the procedure in S2. PDMS is selected
because of its high shear modulus which creates a sufficiently
large difference between the snapping thresholds of the different
actuators with respect to the precision of the pressure supply.
Moreover, a high modulus increases the actuator force and
limits the sensitivity of pmin to the contact force between each
actuator and its piano key such that smin is not distorted by
the interactions with the keys. For the same reason, the piano
keyboard in the demonstrator is a custom construction where
the springs that keep the keys in the upper position are less
stiff than on commercially available keyboards.
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